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i.1

IABSTRACT

IThis report summarizes recent efforts to utilize mathematically exact structural models for

structural analysis and control design. The models developed remain exact at all frequencies,

[ unlike modal models derived from finite element analysis. As a result, control designs based on

these exact models are less susceptible to spillover and instability.

[L Two types of exact modelling techniques are presented. In the first (called Transform

Element Modelling), the Laplace transform is utilized to express the equation describing the

dynamics behavior of the structural element in the frequency-domain. This leads to mathematically

exact dynamic stiffness matrices, which can be assembled to form an exact global structural model.

The TEM methodology is shown to be superior to traditional finite element techniques in terms of

I both numerical accuracy and computation speed. Based on this approach, an open-loop optimal

- control algorithm for small angle slews of flexible structures is developed. The algorithm is
applied to two structural models (a simple mass/appendage structure and the SCOLE structural

J model) and succeeds in minimizing the post-maneuver residual kinetic energy. The issue of

closed-loop control using the TEM methodology is also addressed.

The second modelling technique presented (called the direct approach) deals with the

original partial differential equations describing the dynamics of the structural elements, expressed

in the time-domain. An extended state-space representation is used to develop a disLibuted control

T" theory for simple, one-dimensional systems. The control theory is applied to a Bemoulli-Eular

beam, and the feedback gains are determined for various control and deformation penalties. The

results are validated wth both discrete structural models and analytical results for a beam of infinite
. length.

A hybrid control design, which takes advantage of the favorable properties of both

modelling methods is proposed. In this design, the distributed controller exerts low-authority

control to achieve active damping augmentation. The TEM-based controller exerts high-authority

control, and is designed to meet the performa,,ee specifications for the structural systerm.

I



ACKNOWLEDGEMENTS

The authors wish to thank Dr. DJ. Wilcox for his advice on implementation of the inverse

Laplace transform algorithm. Some of "ie calculations required for this research were performed

on the NUT CRAY 2 supercomputer. This work has been sponsored by the AFOSR, under

contract 49620-89-C-0082.

ii Ft



'II

ABSTRACT 

TABLE 'OF 
CONTENTS

II ACKNOWLEGDEMENTS-

| LIST OF FIGURES v

LIST OF TABLES vii

NOMENMCLATURE viii
1 Introduction I

1.1 The Control-Structure Interaction (CSI) Problem 1
1.2 The Need for Beter Models and Control Designs 41.3 Summary of First Year Research 8

w1.4 Overview of Report 8

2 The TEM Modelling Approach 9
2.1 Advantages of the TEM Method 9
2.2 Inverse Laplace Transform Algorithm 11
2.3 One-dimensional element models 17

2.3.1 Stiffness matrix formulation 17
2.3.2 Interpolation 19
2.3.3 Internal energy formulation 21

24 2.3.4 Axial rod example 242.3.5 Bemnoulli-Euler beam example 27

23.6 High-frequency elements
14 Two-dimensional elements 332.4.1 Plate bending element 36

2.4.2 Plane stress element 38
2.5 Assembly Procedure 42
2.6 Applications 45

2.6.1 Modal frequencies 45
I 2.6.2 Frequency response and transfer functions 45

2.6.3 Time-domain simulation 50

3 Multibody TEM Formulation 53
3.1 Mathematical Model 53

3.1.1 Equations of Motion 53
3.1.2 Solution forthe integral-Partial Differential Equations 56
3.1.3 Connection to Adjacent Elements 60
3.1.4 Recursive Solution for ,he Total Structure 62

3.2 Discussion 64

4 Control Design Based on TEM Models 66
4.1 Open-Loop Control 66

4.1.1 Band-limited coitrol approx-nation 67
4.1.2 Solution without minimization 68
4.1.3 Minimization with point constraints 69

42 4.1.4 Minimization of flexible energy 78
4.2 Closed-loop control 84

II iii

I



4.3 Limitations of the TEM Control Design Methodology 86

5 Direct PDE Modeling 88
5.1 One-dimensional elements 89

5.1.1 General Formulation 89
5.1.2 Bernoulli-Euler Beam Example 90

5.1.2.1 Normalization of Equations of Motion 90
5.1.2.2 The Case of Curvature Actuation 93
5.1.2.3 Numerical Simulation Using Laplace Transform 93

5.2 Two-dimensional elements 100
5.2.1 Membrane model 102
5.2.2 Plate model 102
5.2.3 Complexity Issues 103

5.3 Multiple Element Formulation 103

6 Control Design Based on Direct PDE Models 105
6.1 Linear Quadratic Optimal Control Theory in the 1-D Case 106
6.2 Distributed Control of a Finite Beam III

6.2.1 Cost Functional Ill
6.2.2 Derivation of the Necessary Conditions 12
6.2.3 Numerical Solution of the Riccati Equations 113

6.2.3.1 Solution of the First Riccati Equation 114
6.2.3.2 Solution of the Second Riccad Equation 116

6.2.4 The Case of Curvature Actuation 119
6.2.5 Closed-Loop Simulanon Results 122

6.3 Distributed Control of an Infinite Beam 125
6.3.1 Spatially Transformed Dynamics and Cost Functional 125
6.3.2 Optimal Control Solution 128
6.3.3 The Case of Curvature Actuation 132

6.4 Discussion 133

7 Hybrid Modelling and Control Approach for HAC/LAC Design - 135

8 Conclusions and Recommendations 139

APPENDIX A Ifgh Frequency TEM Elements 142
A.1 Mindlin-Herrmann Rod 142
A.2 Timoshenko Beam 143

APPENDIX B Simulation of Beam with Curvature Actuation 146

APPENDIX C Simulation of a Timosheniko Beam 148

APPENDIX ) Optimal Costs for Distributed Control Systems 149

REFERENCES 151

iv



LIST OF FIGURES

Fig. 1-1: Description of the CSI problem. 2

i Fig, 1-2: Collocated rate feedback for an undamped system. 5

Fig. 1-3: Collocated rate feedback for a damped system. 5

Fig. 2-1: The Bromwich contour used in calculating the inverse Laplace transform. 13
S Fig. 2-2: (a) Frequency-domain sampling used in the inverse Laplace transform

algorithm, (b) Resulting time-domain samples. 13

Fig. 2-3: Time-domain responses generated by the inverse transform algorithm. 16

Fig. 2-4: Axial rod model. 25

Fig. 2-5: Bemoulli-Euler beam model. 25

Fig. 2-6: Mindlin-Hermann rod model. 32

Fig. 2-7: Dispersion curves associated with the Mindlin-Hermann model. 32

Fig. 2-8: Timoshenko beam model. 34

Fig. 2-9: Timoshenko beam dispersion characteristics (aj=4x10 -4 , aE=2.8). 34

Fig. 2-10: Typical two-dimensional element with three generalized displacements and
forces at each boundary poinL 35

Fig. 2-11: Assembly of simple, four element structure. 43

Fig. 2-12: Transfer functions of simple cantilevered element without damping (-), with
Voigt damping (- - -), and with square root damping (- - -). 46

Fig. 2-13: Schematic of the SCOLE structural system with flexible antenna model. 48

Fig. 2-14: Transfer functions from yaw torque on shuttle to various points on SCOLE
model as determined by TEM model (-) and finite element model (- . -). 49

Fig. 2-15: Comparison between simple axial rod model (-) and Mindlin-Herrmann rod
model (- - -). 51

- Fig. 2-16: Time-domain responses of free-free beam element impacted with unit transverse
impulse on left end using Bernoulli-Euler (-) and Timoshenko (-.-) models. 52

Fig. 3-I: Beam cantilevered torigid mass. 54

Fig. 3-2: Example joint connection. 61

i Fig. 4-1: Simple mass/flexible appendage structural model. 71

!V

I



Fig. 4-2: Results of optimal maneuver of massfexible appendage system. 72

Fig. 4-3: Results of optimal maneuver of mass/flexible appendage system ,ith reduced
axial stiffness. 73

Fig. 4-4: Optimal rotational slew of SCOLE structure with four control inputs (see text). 75

Fig, 4-5: Optimal rotational slew of SCOLE structure with nine control inputs (see text). 76

Fig. 4-6: Linear slew -ianeuver with residual energy cost functional, terminal time of 20
sec, terminal displacement of 10 m and terminal velocity of 0 m/sec. 80

Fig. 4. Linear slew maneuver with residual energy cost functional, terminal time of 20
sec, te, J displacement of 10 m and terminal velocity of I m/sec. 81

Fig. 4-8: Rotational slew maneuver with residual energy cost functional, terminal time of
20 sec, terminal rotation of 0. 1 -ad and terminal angular velocity of 0 rad/sec. 82

Fig. 4-9: Rotational slew maneuver ,ith residual energy cost functional, terminal time of
20 sec, terminal rotation of 0.1 rad and terminal angular velocity of O.1 rad/sec. 83

Fig. 4 10: The prototypical control problem posed in the standard form. 85

Fig. 5-1: Bernoulli-Euler beam models. 91

Fig. 5-2: Uncontrolled response of b:am with initial displacement vo(x)=sln(2nx). 98

Fig. 5-3: Response of uniform beam to unit impulse applied at center-span. 99

Fig 5-4: Response of free-free beam to unit impulse applied at x=O. 101

Fig. 5-5: Schematic of multi-element tuss structure. - 104

Fig. 6-1: Carvature feedback kernels for uniform beam. 117

Fig 6-2: Velocity feedback kernels for uniform beam. 120

Fig 6-3: Feedback gains for tapered beam (Beam diameter varies linearly from 1.0 at
x=0 to 0.75 at x=]). 121

Fig. 6-4: Closed-loop simulation of uniform beam xith vo(x)=sin(2nx). 123

Fig. 6-5: Clozed-loop simulation of uniform beam with unit impulse applied at center-
span (r/qu=10 and q'r=qu). 124

Fig. 6-6: Normalized curvature feedback gain kernel for infinite beam. 131

Fig. 6-7: Normalized velocity feedback gain kernel for infinite beam. 131

Fig. 7.l: Schematic of the complete HACLAC control arcitecture 136

Vi

vi.I



LIST OF TABLES

Ttible 6-1: Comparison between optimal costs for distributed control and conventional
Jumped-parameter contr o l. 1 2 6



NOMENCLATURE

ROMAN SYMBOLS

a radius of rod of circular cross section
a vector of arbiUary coefficients for TEM interpolation functions
A cross section area for general beam element
BX  matrix linear spatial differential operator for control input
c stress wave propagation velocity
c vector of undetermined coefficients for open-loop control inputs
C closed contour in the complex plane
C connectivity matrix for TEM assembly
DXY dual operator to ,y
D finite difference matrix operator for second derivative
Dx  matrix linear spatial differential operator for disturbance input
E modulus of elasticity
E internal energy of deformation of structural element
f generalized distributed forcing input
f vector of basis functions for open-loop control inputs

net forcing due to initial conditions and distibuted forces
fI,f 2 normalized distributed feedback gain kernels fcr infinite beam
F internal force resultant for axial rod
F matrix of basis functions for open-loop control inputs
g generic function of time
G shear modulus
G dynamic flexibility matrix for TEM analysis
Ge compensator transfer function matrix
I moment of inertia of cross section for general beam element
j imaginary unit
J cost functional
Ja augmented cost functional
k generalized stiffness or mass paran -ter
kl,k 2 distributed feedback gain kernels for tiite beam
K dynanic stiffness matrix for TEM analysis
L structural element length

Viii



S--

scalar lar differential operator
EA scalar linear differential operator4.,Ly linear spatial differential operator in two dimensions
Lx natrix linear spatial differential operator
1;1 inverse Laplace transform operator

fm mass per unit length for general beam element
m distributed curvature input
M internal moment resultant for beam clement[ n distributed disturbance input vector
N number of frequency samples used in inverse Laplace transform algorithm
N mesh discretization grid size for distributed control solution
p distibuted control costate vector
PX distributed control Riccat operator matrix
q generalized TEM boundary force vector
qd net effect of distibuted forcing and initial conditions on qi. qc control boundary forces
Q distributed control state penalty weighting matrix
r distributed control effort penalty weighting
R weighting matrix for open-loop optimal control
s complex frequency
S internal shear resultant for beam element
S distributed control Riccat function matrix
t time (independant variable)
tf open-loop optimal maneuver terminal time
T simulation time for inverse Laplace transform algorithm
UxUy in-plane deformations for two-dimensional element

_ u structural state vector in TEIM formulation
u distributed control input vector
Up effect of distributed forcing and initial conditions on u
v generalized displacement
vH homogeneous solution vector in TEM formulation
v. Green's function in TEM formulation
W generalized boundary displacement vectorI w disturbance input vector
W primary N'th root of unity
W quadratic cost matrix for optimal open-loop maneuvers

I ix



x spatial coordinate (independant variable)

x distributed state vector

y dummy variable of integration

y vector of outputs of interest

Y response marix to basis function inputs for optimal open-loop control problem

z dummy variable of integration

z performance measure

Z primary 2N'th root of unity

GREEK SYMBOLS

a offset of Bromwich contour from imaginary axis

3 normalized inverse mass density

S Dirac delta function

e components of strain tensor

0 dynamic stress function for TEM formulation

r interpolation matix for TEM formulation

1" normazed bending stiffness

0 matrix relating u to a in TEM formulation

X Lame constant

. Lagrange multiplier vector

v Poisson's ratio

0 bending rotation of cross section of beam element

0 geometric matrix for TEM formulation

p mass density

a components of normal stress

't shear stress

wt radian frequency

Aco frequency interval

internal energy matrix in TEM formulation

T matrix relating w to a in TEM formulation

matrix relating q to a in TEM formulation

spatial frequency variable
V2 Laplacian operator

x



I

ANNOTATIONS

() differentiaton with respect to time

) temporal Laplace transform
(A) spatial Fourier tansform

T transpose

() complex conjugate

W adjoint operator

8() first variation

( index for a vector quantity
(),j index for a marix quantity

()U control component
()n disturbance component

)u potential energy component

)T Idnetic etergy component

)d dimensiotal form of variable
00 initial condition
()i element indentifier

( inertial reference frame

(0) boundary point identifier
0O global coordinates

I

I



1 INTRODUCTION

This report summarizes the research performed under AFOSR contract 49620-89-C-0082,

"Transform Methods for Precision ,4onlinear Wave Models of Flexible Space Structures." The

work has focused, primarily, on exact modelling and control of flexible structures. Two modelling

approaches have been developed, each of which has motivated a structural control methodology in

a natural way. The Transform Element Modelling (TEM) approach uses the Laplace transform to

obtain exact, frequency-domain structural element models. An assembly procedure is then used to

create an exact global model. Several open-loop control algorithms have been developed based on

the TEM models generated. The direct PDE approach deals specifically with the underlying time-

domain partial differential equation describing the structural behavior. This methodology leads to a

distributed control theory, which is analogous to traditional state-space control. These two control

algorithms are alternatives to conventional stuctural control approaches. They are designed to

alleviate the problems associated with control-structure interaction, as described in the next section.

1.1 The Control-Structure Interaction (CSI) Problem

The requirements for many rmlitary and civilian structures applications both in space and on

earth call for the use of large, high performance, lightweight structures. In most cases, the

structural weight must be kept as small as possible to avoid excessive transport costs. However,

the flexibility associated with large, lightweight structures increases the likelihood of troublesome

structural behavior. The vibrational modes generally begin at low frequency, and are excited by

disturbances. Potential sources of these disturbances include rotating machinery for terrestrial

applications and attitude control, antenna retargeting and payload shifting for space applications.

Often, the structure, disturbance and control bandwidths are close or overlapping, causing

undesirable vibration to propagate through the structure. This situation is described in Fig. 1-1. In

systems with stringent pointing requirements (such as space-based telescopes, interferometers,

lasers, etc.), this can severly degrade performance. Similarly, for systems requiring pilot isolation

I
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or flutter control, performance degradation occurs if unwanted vibration is present. When these

problems arise, some sort of vibration suppression, either active or passive, is required.

Passive damping techniques alone are usually insufficient to meet performance

requirements. In order to achieve significant modal damping (on the order of 50%, say), an

unacceptably large mass of damping material must be added to the structure. As a general rule,

passive damping can only provide about 5% to 10% damping for a 5% increase in structural mass

(See, for example, Plunkett (1970)). Consequently, these techniques provide low levels of

vibration suppression and are well suited for addressing steady-state disturbances arising from on-

board or environmental sources. Active control techniques are required for suppressing transient

bahavior and large, disturbance-induced structural responses.

Large, lightweight structures have three basic characteristics which make active control

design difficult. First, the structures are difficult to model precisely. The structural dynamics

mathematical models obtained from finite element techniques only approximately analyze high

frequency behavior. Typically, only the first few modes are known to any degree of accuracy. As

a result, the active control design must be exiremely robust. Unfortunately, robustness often leads

to cry conser-ative designs which sacrifice performance for stability. Second, these structures

are modlly dense and lightly damped. This makes the closed-loop system extremely sensitive to

paranme:er N aradons, and often leads to instability. Third, the underlying dynamics are of infinie

order As a result, traditional full-order linear quadratic regulator (LQR) and linear quadratic

gaussian (LQG) control designs are not directly applicable to these types of systems.

These structural characteristics lead to a phenomenon described by Balas (1978) as
ptllover," . . can be explained as follows. In a typical contro, design procedure, the

&po"ur.a c 5da=tc element model is first urncated to include only those modes which are known to

a good depec( ac.,,acy This becomes the evaluation model, against which various control

eti4i L-,' ,.Zgv, Typi.y, the evaluation model is of too high an order to achieve an

e-;. - da : r"€t As a cst. a reduced order controller is designed, either directly from

4 . 99e6 -ev* , L6 ) o biased on s further truncation of the evaluation model



+ (Kosut (1970), Yousuff (1984)). In either case, the action of the controler excites all the modes of[:. the evaluation model to some degree. This is referred to as control spillover. Likewise, the

sensors associated with the controller also respond to the modes truncated from the evaluation

model, leading to observation spillover. Additional control and observation spillover occurs when

the reduced order controller is applied to the actual infinite order structure.

1.2 The Need for Better Models and Control Designs

CurTently, the methodology generally employed in most structural control problems is the

High-Authority Controller/Low-Authority Controller (HAC/LAC) approach, described in Gupta

(1981). This is a heirarchical control architecture that addresses many of the issues presented in

the previous section. The design procedure usually involves three distinct procedures. In addition

to developing the RAC and LAC active control systems, passive damping augmentation is usually

designed. In many cases, prefiltering of command inputs is also required to minimize excitation of

structural modes. The modal-based command shaping method developed by Singer (1990) is an

example of the prefiltering concept.

A passive damping treatment is almost always required in the control design of infinite

order, lightly damped systems. The closed-loop system is guaranteed to be unstable for undamped

infinite order systems and any physically realizable controller (i.e., any controller vith some

amount of phase lag). This phenomenon is explained in Fig. 1-2. Furthermore, even slightly

damped systems can be made unstable by increasing the gain of the controller sufficiently. As a

result, passive damping is usually required for all high performance structures. For some

applications, adequate passive damping may be inherently present in the structure, due to material

friction, viscoelasticity, and/or joint hysteresis. High performance applications will likely require

I careful tailoring of the passive design in order to meet performance goals. By shifting the open-

" loop poles of the system into the left half-plane, passive damping has the added benefit of

desensitizing the controller to modelling errors, thereby increasing robustness. Though attractive

I
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s-plane

¢/

Fig. 1-2: Collocated rate feedback for an undamped system. The dynamics of the controller,

r-presented here by a pole on the real axis, alter the angles of departure of the higher frequency

loci. Instzbiby ft-st occurs in the locus with approximate radius corresponding to the radius of the

first order pole of the control]er.

s-plane

Fig. 1-3: Collocated rate feedback for a damped system. The passive damping, in this case, is

sufficient to prevent instability, and the damping in the lower modes car, be increased significantly.

In an actual LAC design, many actuators and sensors are used, which enables greater damping of

higher modes. 5
5



for practical and theoretical reasons, mass penalties place an upper limit to the amount of passive

|- damping that can be implemented.

[ The LAC (also called active damping augmentation) is usually an ad hoc design, as the

-} primary objective is to achieve robust control with a large number of simple controllers (Aubrun

(1980)). Typically, collocated rate feedback is employed. The effect of this form of feedback on

the modes of the structural system is shown in Fig. 1-3. The main objective of active damping

augmentation is, as the name implies, to increase modal damping significantly, so that the HAC

does not destabilize the system in the presence of modelling errors.

The ptimary design objectives are accomplished via the HAC. It is usually a dynamic

] compensator of high order, and utilizes information from sensors located throughout the structure.

Multiple actuation is also commonplace. These actuators and sensors need not be distinct from

I those used in active damping augmentation. As the name implies, the HAC exerts high gain

control on the structure, moving the closed-loop pole locations considerably.
The current state of the an in HAC/LAC design suffers from several serious deficiencies.

The first and most important is the fidelity of the underlying structural model. The traditional finite

element modelling approach is incapable of recovering the high frequency-dynamics of the

S structure, unless an extremely fine discretization is utilized, which is usually computationally

unacceptable. This limits the accuracy of the evaluation model and its utility in compensator

design. Furthermore, modelling of damping mechanisms, such as viscoelasticity, is difficult to

formulate in a finite element environment. The damping is usually assumed to be model, and the

actual values for the damping ratios are determined quite arbitrarily.

Clearly, then, a more accurate structural modelling approach would be extremely beneficial.

It particular, it is desirable to develop a modelling methodology that avoids modal truncation and

spatial discretization altogether. This is the basis for Partial Differential Equation (PDE) modelling

approaches. The equations describing the structure are kept intact, and remain mathematically

exact at all frequencies. The issue of modelling error is then reduced to knowledge of the physical

16i



parameters for the system and the actual choice of the mathematical representations of the structural

elements.

Another limitation of the HAC/LAC methodology is in the active damping augmentation,

which is, for the most part, ad hoc. Some systematic approaches have been developed, but have

limited applicability. For example, MacMardn (1990) describes a method for minimizing the

power imparted to the structure at an interface using H-' techniques. However, only the near field

effects are considered. Reflections of the disturbances at other boundaries of the structure are not

modelled. This represents a worst case design, with the assumption that nothing is known about

the structure except in the immediate vicinity of the controller. This approach is usually too

conservative for practical applications. Mler (1991) uses a wave propagation approach to design

controllers that absorb power at structural interfaces. Again, the lack of a far field model results in

a conservative design. Furthermore, neither of these designs is applicable to applying control in

the interior of a structural element. A more systematic LAC design methodology with less

conservatism is clearly needed.

Current methods of designing the high-authority controller are typically overconservative,

as the closed-loop systems designed from the truncated model tend to be sensitive to parameter

uncenainty. Typically, only the first few modes are used in the design. The remaining modes are

considered ureiable, and contrib,:e to modelling error. A less conservative design (and therefore

one with better nominal performance) would arise from an exact structural model, as the modelling

errors are smaller and are more easily characterized.

The problems discussed above suggest that new modelling approaches may lead to new

control design methodologies in a natural way. By using PDE models, mathematically exact

representations of structural systems are available. Control designs based on these models will

account for all modes of the structure, so that the design need not be overly conservative. The

achievement of this design methodology would significantly enhance the overall performance of

large, flexible structures in the presence of disturbances.

7



1.3 Summary of First Year Research

F The research conducted in the first year of this program focused on developing exact

structure models that preserve the wave-like characteristics of structural disturbance propagation.

The primary emphasis was placed on developing the TI methodology and validating it with

several structural evaluation models. Of particular concern in the first year were numerical issues

related to the accuracy of the model. For low and high frequencies, numerical overflow and

. roundoff errors occured when computing structural responses. These issues were resolved by

using low- and high-frequency asymptotic approximations where required. Also developed was

an open-loop, optimal control algorithm for linear and small angle slews of flexible structures. The

details of these developments can be found in Lupi (1990), but are also presented in Chapters 2

and 4 for completeness. The application of the TEM approach to two-dimensional structural

elements was also addressed. In Lupi (1991b), a plane stress element was developed that utilized a

frequency.dependant version of the Airy stress function. The results of this study are also

presented in Section 2.4.2.

1.4 Oerview of Report

This report summarizes developments in structural modelling and control design from the

past year as well as reviewing the previous year s research. Chapter 2 introduces the TEM

methodology and its applications to structural analysis problems. The extension of the TEM

approach to multibody systems is addressed in Chapter 3. Open-loop control designs, based on

TE.M models, are presented in Chapter 4. The extension to closed-loop control is also discussed.

Chapter 5 develops the direct PDE modelling approach for one- and two-dimensional structural

elements. The direct simulation of a simple one-dimensional system is also presented. The direct

I PDE modelling approach leads naturally to a distributed control theory, which is developed in

Chapter 6. The possibility of a hybrid modelling approach for HAC17-AC control designs is

discussed in Chapter 7. Finally, conclusions and recommendations are presented in Chapter 8.

I
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2 THE TEM MODELLING APPROACH

In this chapter, we introduce the Transform Element Modelling C(rEM method of structural

analysis. This approach begins with the partial differential equations describing the dynamics of

the individual elements that describe the strucure. The Laplace transform is then utilized to

express these equations in the frequency-domain. Exact, frequency-dependant stiffness matrices,

which relate a set of generalized forces to a set of generalized displacements at the element

boundaries. are then derived. These stiffness matrices are then assembled to form a global model,

in a manner similar to the traditional finite element assembly procedure. The advantages of this

approach are described in Section 2.1. The procedure for converting frequency-domain data back

into the time-domain is described in Section 2.2. The general theory for one-dimensional

elements, and some simple representative examples, are presented in Section 2.3, while Section

2.4 applies the TEM methodology to two-dimensional structural element models. The assembly

procedure is descnbed in Section 2.5, and several applications of the TEM approach are presented

in Section 2.6.

2.1 Advantages of the TE.M Method

The TEM approach has several important advantages over the traditional Finite Element

Method (FEM), as measured in terms of numerical accuracy and computational efficiency. The

dynamics of the one-dimensional elements that comprise the structure to be analyzed are

represented exactly in the TEM approach. This is made possible by the Laplace transform

operation, which converts the time-domain partial differential equation of a structural element into a

frequency-dependant ordinary differential equation. As a result, analytical general solutions to

these equations are available for most common element models, such as Bernoulli-Euler and

Timoshenko beams, and axial and torsional rods. More complicated elements can be handled by

special numerical modelling approaches. This is in marked contrast to FEM modelling, where each

element is divided into smaller subsections, each of which is constrained to deform with a finite

number of degrees of freedom. The interpolation functions associated with the deformational
9J



degrees of freedom satisfy the underlying differential equation exactly for the static case, but only

approximate the exact solution the dynamic case. Consequently, for dynamics problems, the FEM

analysis can only yield approximate results. Conversely, the TEM approach, which utilizes

frequency-dependent (generally transcendental) interpolation functions, is mathematically exact at

[ all frequencies. Furthermore, since only one mathematical element is required for each physical

structural element, the TEM approach is far superior to the FEM methodology in terms of

t computational speed.

For two-dimensional structural elements, general exact s,.,'-tions are not available, but the

TEM methodology makes it possible to approximate the solutions in terms of finite series of

displacement functions. Each of these functions satisfies the underlying differential equation in the

interior of the element exactly, and approximations are made only at the boundaries. A comparison

between the TEM and FEM methods in terms of speed and accuracy for two-dimensional elements

has not yet been attempted.

Another important advantage of the TEM approach is its ability to incorporate general linear

viscoelastic damping models in a straightforward manner. Using the correspondance principle, as

described by Hughes (1989), the physical parameter of interest is simply replaced with a

frequency-dependent counterpart. For example, the Voigt damping mechanism is easily expressed

by

E(s) = [+ ]Eo (2.1)

where E is the modulus of elasticity of the material, E0 is its static value, s is the (generally

complex) frequency, cov is a characteristic frequency, and &, is an empirically determined

nondimensional parameter. A more general damping model, suggested by Hughes, is

2s 2+2 Ii

j E(S) = [ + , s+2 ws+oj E (2.2)

10I l



r
where, for each value of i, a i is a characteristic scaling factor, coi is a characteristic .frquency, and

- is a cacteristic damping ratio, all of which are empirically determined. However, the

advantage of the TEM approach lies in its ability to model damping mechanisms of infinite order,

such as the fractional derivative models discussed by Bagley (1983). Such models require the use

of fractional calculus techniques when employed in the time domian, but are easily cast in the

frequency-domain as fractional powers of the complex frequency. For example, the square root

damping model is written as

E(s) =I + a s E0 (2.3)

where w, is a characteristic frequency and &s is empirically determined. Thus, since all linear

% iscoelastic damping models have frequency-domain representaticr.s, any model can be used in the

TEM fo mulation.

Yet another advantage of the TEM approach is the ability to take derivatives of time-domainr

functions. All that is required is multiplication of the function by the complex frequency variable.

Similarly, additional multiplications by s yield higher order derivatives. Thus, ven a set of

frequency-domain data representing a time-domain response, it is a simplematter of multiplying

the data by the complex frequency before invoing the inverse Laplace transform to obtain the

derivative of the response.

2.2 Inverse Laplace transform algorithm

In any frequency-domain modelling approach, it is of paramount importance to have the

ability to convert data back into the time-domain in a computationally efficient manner. This is the

basis for many inverse Laplace transform algorithms, such as the method of expansion by

Laguerre functions as described by Weeks (1966) and Wing (1967). However, the most

straightforward, stable and accurate method for general functions appears to be the numerical

approach of Wilcox (1978). It is this method that has been used exclusively in this research, and it

11



therefore deserves mention herm. A detailed comparison of several other approaches may be found

The La-place transform pair is expressed as

i(s) = g(t) estdt (.2b

where C is a closed contiur which encloses all the singularities of i(s). If we assume that i(s)

has no poles with real parns greater than a, where a is a small positive number, then the integration

[contour can be taken as the Bromwich contour, which is shown in Fig. 2- 1. Furthermore,

assuming that the semicircle part of the contour does not contribute to the integral, the inverse

trnansform reduces to

g(t) = 5 ()- i'c s = a+ jca (2.5)

Since the path of integration is displaced to the right of the imaginary axis, marginally stable and

Islightly unstable functions can be inverted. Because g(t) is assumed to be real-valued, it follows

from Equation (2.4a) that 9-(s*) = 9-(s)*. As a result, Equation (2.5) reduces to

g(t) = e' Re {~gsei' dw} (2.6)

II The numerical computation of g(t) involves calculating i(s) at N evenly-spaced complex
frequencies along the Bromwich com~our, as shown in Fig. 2-2. These values are given by

(O = (2k+l)Ao , k =0, ..., NI-l (2.7)

I Te algorithm yields 2N values of g(t) at evenly-spaced time intervals, given by

M t= 2+1T , m= 0,.2N-l1 (2.8)

U 12
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Fig. 2-I: The BrotN~ich contour used in calculating the inverse Laplace transformi.
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Fig. 2-2: (a) Frequency dornain sa'np!ng used in the inmerse Laplace transfortnalgori-hm, (b)

Resulting time-domain samples. I
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where the time interval extends from t=O to t=T. Wilcox (1978) shows th.t, for reciprocity, the

folloing relationship must hold:

A =c (2.9)

I Hence, Equation (2.6) can be approximated by the midpoint rule as follows:

0g()- emm Re f ()0 (2.10)

Factoring out constant terms ftom within the summation and simplifying yields
~N-I

z ra (2.1%!1)41 k
SOt) Z e"n Re T I [(sk) 2 2

where

Z = (2.12)

If we now define k and gm by

e ) ' g(T-) Re gm (2.3ab)

Then Eq. (2.11) becomes

N-I
C= gk Z k- (2.14)

L=O

For computational efficiency, it is useful to write Eq. (2.14) in a form amenable to fast Fourier

transform techniques. This is accomplished by separating the tima-domain samples into even and

odd sets. Thus,

i 2 n --0, N-I (2.15)
in 2n+tJ

I 14
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and the inverse transform is applied wice, yielding

N. -k W~ (2.16a,b)
k--O k=O

where

_k -- 2z', W = z -= €j (217a,b)

Thus, given a series of samples, g(sk), in the frequency-domain, the algorithm is as

follows: Use Eq. 2.13a to obtain gk and Eq. 2.17a to obtain g . Next, apply the fast Fourier

transform, as described by Cooley (1970), to obtain gn and F. Upon reordering the data, which

yields gn, use Eq. 2.13b to obtain g(tm). Wtlcox (1978) shows that, as a general rule of thumb, it

is best to take a=2n/T. Using this rule, the author has determined the algorithm to be accurate to

0.1% for the first 75% of the simulation for all test functions, with some deterioration occuring

after this time. This can be overcome by increasing the simulation time slightly and discarding the

later data.

In cases where the time-domain response contains step discontinuities, it is useful to scale

the frequency-domain data by a Gibbs' oscillation suppression factor, given by

fk - sin[(2k+l)n/2N] (2.18)
(2k+ 1 )7/2N

This has the equivalent effect in the time-domain of passing the signal through a finite-time

integrator with time constant equal to the time between samples, as explained by Lanczos (1957).

Consequently, this scaling does not affect the response where it is continuous in time, while it

re&ces Gibbs' oscillations considerably at discontinuities (at the expense of slightly increased rise

time). Fig. 2-3 shows some time-domain responses generated by the inverse Laplace transform

algorithm, both with and without the Gibbs suppression fact .The favorable effect of the scaling

is obvious. Thus, a numerically robust inversion algorithm has been presented. This algorithm

has been used extensively in this reasearch.
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2.3 One-dimnson$al element MOdeS

We now proceed to develop the TEM formulation for one-dimensional elements. The

general equdton of motion for a one-dimensional structural clement can be 'winen as

kuL,[v(x~t)] + JTV (xj) =fd(x,t) , xc eL0,L) , t e [0,-) (2.19)

%%here v(x,t) is a generalized displacement, fd(x,t) is a generalized distnbuted forcing function, L,

is a lin~ear spatial differential operator of order n, and ()denotes differentiation, %ith respect to

tine. The constanitS ku and kT are physical parameters related to the internal potential and kinetic

energy of deformration of the structural element, respectively'. They can be thought of as

generalized stiffness and mass parameters. The boundary conditions are as yet unspecifted. The

equation of motion is such that all r.le% ant internal states (force resultants, moments, etc.) can be

obiained via spatial differential operations on v(x,t).

2.3.1 Stiffness miarix formulation

For a one-dimensiona element, it is possible. to obtain an exact, frequency-dependent

stiffness matrix relating generalized boundary forces and displacements. This is possible becaocs

thie Laplace trasform operation converts the partial differential equation into an ordinary

differential equation, %%hose solution can be expressed analytically (usually in the form of

trascendental functions of the complex frequenc)). Taking the Laplace transform of Eq. (2 19)

leads to

=u Lfk d(x ,s) + kT 'O(X) + kT S VW (2.20)

%%here s is the (generally complex-N alued) Laplace variable, () denotes the transform of a function,

and vo(x) and '0(x) represent the initial conditions. From this point on, the ov'erbar on

tranisformed functions %;ill be assutne4 so as to simplify the notation. Also, hie right hand stde of

Eq. (2.20) wil be lumped into a single function, fd(x,s), in the frequency-domain. This leads to

17



LXtV(x-s)] + Is2 Vcx,s) = fd(x,s) (2.21)

We wish to express the solution to the preceeding equation in terms of generalized

displacements and forces at the boundaries of the stmctural element. This facilitates the assembly

of these structural elements into a general structural model, as will be discussed later. Thus, the

general solution is expressed as

I L
v(x,s) = v(xs)

Ta(s) + j vp(x,4,s) Yd(4,s) dt (2.22)

where v'H(x,s) is an n-vector of homogeneous solutions to Eq. (2.21) and a(s) is an n-vector of

arbitrary constants. The Green's function, vp(x,.,s), corresponds to the operator L, + kTAU) s2

and satisfies the essential homogeneous boundary conditions at both boundaries.

We must now express the generalized boundary displacements, w(s), and generalized

boundary forces, q(s), in terms of a(s). Since knowledge of v(x,s) implies knowledge of the

entire state throughout the element, these boundary conditions are obtained by simply evaluating

v(x,s) (and its derivatives) as given in Eq. (2.22) at the boundaries. This leads to linear

relationships between the boundary states and the ao'bitrary constants, which can be expressed as

w(s) = l(s)a(s) (2.23)

and

q(s) = T(s) a(s) + qd(s) (2.24)

where T(s) and 'l(s) are n-by-n matrices, and qd(s) is an n-vector arising from the integral term on

the right hand side of Eq. (2.22). Because satisfies vp(x,.,s) satisfies (by construction) the

homogeneous essential boundary conditions, there is no term in Eq. (2.23) corresponding to qd(s).

Combining Eqs. (2.23) and (2.24) leads to the desired relationship between the boundary forces

and displacements, giver by

I
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where ~ ~ ~ s K=)i h '~ K(s) :(s)+ qd(S) by(2.25)

It hudb ntd:a at any complex frequency, Eq. (2.25) is mathematically exact. This

is in contrast to taionlfinite element stiffness matrices, which are usually derived from an

approximate solution to the equation of motion describing the dynamics of the structural element.

2.3.2 interpolation

T'he exact representation of the structural element is not restricted to the boundary forces

and displacements. In addition, the internal states of the element at an arbitrary location can be

computed exactly. This is accomplished by first expressing the n-dimensional nternal state vector,

u(x,s), in terms of v(x,s):

lu(x,s) = LCX[V(X,S)] (2.27)

Here, Ex, is an n-dimensional spatial differential operator vector, and the superscript (t) indicates

that the elements of u(x,s) are e> pressed aith respect to an inertial frame, -Malcing use of Eq.

(2.22), %;e obtain

Tu(x's) = (d)(x,s) (s) + u(x,s) (2.28)

where the following definitions have been employed:

L

(ID(X,S) = 1[,H(X,S)T] ,up(xs) = C[vp(x,4,s)] Td(~s) d4 (2.29)

Using Eq. (2.23) to eliminate a(s) yields

Ju(x,s) =c1(x,s) (Ps] 1 W(s) + up(x,s) (2.30)

19



Thus, the internal states are easily expressed in temis of the boundary displacements.

It is usually more desirable to express the internal states in a frame fixed to one of the

boundaries of the su-uctural element This is useful, for example, if the structure is undergoing a

I rigid motion. Expressing the internal states "with respect to a frame fixed to an element boundary

would then indicate the amount of internal structural deformation only. This change of reference

affects tChe internal generalized displacements only, since the internal generalized forces are

automatically zero for rigid motion. The general linearized relationship between the state vector

expressed in the two frames is given by

I u(xs) = lu(x,s) - O(x) w(s) (2.31)

I where u(x,s) is the state vector expressed in the moving frame and (9(x) is an n-by-n matrix which

is independant of frequency. Collecting the previous two equations yields

u(x,s) = r(x,s)w(s)+uP(xs) (2.32)

where

P(x,s) = . l = '(x,s) [l(s)]1 - O(x)- (2.33)

Lyn(x,s)TJ

S A particular element of the internal stt vector is then given by

u,(x,s) = Vx s)T W(s) + up,(x,s) (2.34)

Thus, once the generalized displacements at the boundaries are known, it is a simple maner to

obtain the internal states. Once again, the formulation is exact, and no modal trncation or finie

element approximations have been made.

I
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2.3.3 Internal energy formulation

A useful scalar measure of the state of deformation ofa flexible element is the total energy

due to deformation. It is particularly useful in control applications, as it is a quadratic function of

defonnation amplitude and is therefore well suited for linear quadratic regulator problems. The

internal energy within a particular smtctural element is obtained by integrating the sum of the

potential and kinetc energy densities over the length of the element. This leads to an expression of

the form

L

E(t) = j [ku,(X't) + kTt*(x'tl d x (2.35)

where E(t) is the internal energy at time t, and Uu(x,t) and UT(X,t) are components of the internal

state vector related to the potential and kinetic energies, respectively. Note that these components

are now expressed in the time-domain. In order that the internal energy be independant of rigid

motion, it is imperative that uT(x,t) be expressed with respect to one of the boundaries of the

element, as described in the previous section.

The terms uu(x,t) and uT(x,t) are neW expressed as the inverse Laplace transforms of the

conesponding frequency-domain functions. This is accomplished via Eq. (2.5) and leads to

L ,,2 -

E(t) = UJ { ~(Juxse~tc +k s UT(x,s)e~tdca) }d, (2.36)

where

k(t) = . 2c- (2.37)

We seek an e),act expression for the total energy of deformation. It is therefore necessary to

replace the squared integrals with double integrals, so that the order of integration with respect to

space and frequency may be reversed. This makes it possible to perform the spatial integration
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analy~ally. Thus, by ,ritng each inverse tansform integral next to itself, using different dummy
variables of integration, and grouping the integrals together, we obtain

+ I- u js5 1 S2 UT(X,Sl)UT(XS2)td(Ol 2)dw 1 dco2 I dx (2.38)

1 where

si = a+jcoi 
(2.39)

For simpliciry, we have assumed that the initial conditions are zero and that no distributed forcing

occurs in the interior of the element. Interchanging the order of the spatial and frequency

integrations in Eq. (2.38) yields

I L
E (t) C Cf ,IUUXS2d

I L
+ kTsI 2 J UT(X,St) UT(x,s 2)dx J el> ' -' dw1 dc. 2  (2.40)

We are now able to express the spatial integrals in terms of the boundary displacements. Ma,.ng

I use of Eq. (2.34) leads to

ui(xsl)ui(x,s2)dx = W(sI)T--(SIs 2 )w(s 2) (2.41)

where

* 22
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Ei(S1, 2) yxsl y(xsTd (2.42)

Since yu(x,s,) and ycr(x,sl) arec expressed analytically, the matrices Z-U(sl,s 2) and ET(s1,s2) can

also be computed exactly at each frequency. Finally, substituting Eq. (2.4 1) into Eq. (2.40) yields

whee 1(t) ' --s) (sI,S2 ) W(s2 )e d 1 dw (2.43)

_(s1,S-) = kUU(SI,S 2 )+kTS)s2F-T(sl,S2) (2.44)

Thus, given the boundary displacements in the frequency-domain, the energy of

deformation is computable via a double integral. For genera] motions, an analytical solution does

not exist, and E(i) most be computed numerically. The computation time is reduced by a factor of

two by exploiting the follo~vng symmer;y properties of E

-(S,,Sl) !:(l ' 2)T(2.45b,c)
=($sIs2) B (s1,s2 )* )

Using these properties makes it possible to reduce the integral) to

E(I) =o k.()J [%V(SI) T '(sl,s2) W(S2) e)((01+02)1

+ W(St)T (Si.;) w(s 2) ei"1'2)'] dcoI do, 2  (2.46)

In the actual implementation of this formula, the integrals are replaced with summations, the upper

limits are replaced with finte frequencies, and a simple midpoint rule algorithm is invoked
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2.3.4 Axial rod example

We first consider a uniform rod constrained to deform axially, as shown in Fig. 2-4. For

this element, the simplest model that describes its dynamic behavior is the wave equation, given by

- 2Av(x,t) + pAv(x,t) = fd(x,t) (2.47)

where v represents the axial defletion of the cross section, A is the cross sectional are, and p and

E are the material density and modulus of elasticity, respectively. Implicit in this model is the

assumption that the deformation of the element is uniform across the cross section. Also,

Poisson's ratio effects are ignored. The internal state at any location, x, is therefore completely

characterized by two components:

u(x,S) = L [EA-] v'(x,s) (2.48)

Here, F represents the net force resultant within the rod. The generalized boundary forces and

displacements are just these quantities evaluated at x--O and x=L:

r,(o,)lr.F~.,q= [EA ,0.)
w(s) = [(Os)' q(s) = [F(0,s)] L (Ls) (2.49a,b)

The homogeneous solution vector is simply

e, - x e s (2.50)

and the Green's function kernel is

inh 5.L) sin.

vxs sirih iL Px x :5v(x, sinht sL - (2.51)n si 13-sinh .(Lx) x > ,

Equations (2,49a,b) and (2.50) can be combined to determine the dynamics stiffness matrix, "' hich

is given by

2
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-H- H-- --- H.-

Fig. 2-4: Axial rod model. Deformation is uniform over cross-section.

w2(s)=e(O,s) w4(s)=e(L,s)

w1(s)=v(O,s) w 3(s)v(L,s)

Fig. 2-5: Bemoulli-Euler beam model. Planar cross sections ;emain planar and perpendicular to

deformed beam axis. J
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K(s) AsPnhpL[-1co L (2.52)s i ch PL -1 cos

LAs expected, the elements of K are transcendental functions of the complex frequency. Also, this

Lstiffness matrix reduces to the finite element static stiffness matrix for the axial rod in the limit as s

approaches zero. The effects of initial conditions and distibuted forcing are computed via

L
EA l'sinhP3(L-xr'

d(S)= sTJnh L sinh px J Yd(Xs)dx (2.53)

where the interpolation matrix is given by

r ~s) - [ sinh P(L.x) sinh Ax 1 ri 01

snhL, - cs, i(,-,) , coh pi< - 1[ 0] (2.54)

The internal energy matices are quite complex, but they are nonetheless expressible in an

analytical form. The kdnetic energy kernel can be expressed as the sum of the following four

mstrces:

. ,oL~t\ ,-,.,,-i2 ,t:2 / (

L (S) =T 02-A 2 . *i i (2.56)

[I where the folloingy e rnns veen madeIP-0

...(.I<. _1 ATP' 2 PP . | (3 (2.55)

-1feAI 2 P2 A(2

while the potnl ng ernelns iven by ae
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A(3) = [ ei.J (2.57a)

Ai = 2 sinh ]3iL (2.57b)

P, = ".Jgsi (2.57c)

It is clear that, for e\ en the simplest of stnuctural element models, the internal energy expressions

become quite complex. However, this is to be expected, as the energy is a quadratic function of

deflection amplitude, and represents an integrated effect over the entire domain of the element.

The preceeding expressions for the stffness and interpolation matrices are well suited for

numerical computzon, pro\ ided that the complex frequen.y at which they are evaluated is neither

too larce nor too small in magnitude. For these extreme situations, numerical accuracy and

merflow errors become issues. These problems are readily handled by using asymptotic

approx'zanons to the stiffness and interpolaton matrices. The approximations are obtained by

repk1cing the tigonometric and h-perbolic functions with appropriate series expansions, and

mtuncaing hgher order terms.

2 3.5 Bernoulli-Euler beam example

For bending elements, the simplest model is the Bernoulli-Euler beam, shown

schenaica .), tn Fig. 2-5. Th e basic assumptions of the model are that planar cross sections of the

bean remrai: planar and normal to the center-line after deformation, and that differential cross

secoons ha e negligible rotary inertia. Under these assumptions, the equation of motion becomes

E..,v(x,t) + pAv(x,t) = fd(x,t) (2.58)

x here v is the transverse deflection, E and p are the modulus of elasticity and density of the

material, respectively, and A and I are the cross sectional area and moment of inertia, respectively.

Taking the Laplace transform, we obtain
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a' V(X,S) - a V(X,S) fdxsa 4  QAI- (2.59a,b)
YJ 7dXS)El

For tNs element, the stuctural state vector has four elements, givecn by

lu(x,s) 2 MX)= E a i~( s (2.60)

LS(Xs)l E a3J
- El3

where e is the rotation of th~e cross section, and NI and S are the internal moment and shear

re sultantS, respectively. The generalized boundary displacements and forces are then

Els) 2-v0s
r"051 a i j* S0:,s) - -v(

- I (00s1) TX (O's) r(0:s = ax2  )

(L, ,Ls) q(s) = SLsa 3  (2.61a,b)

p( L -El -, (Ls)j

The homoceneous solution vector conmais four elements as wel and is given by

vI..(X,S)T =[COX COX ejax e~iax) (2.62)

and the Green's function kemnel follows as:

r St( ' (ax) + g.(4.0) C'(cx)
40 (1~ ( ch cz) (23

E(,s) S'(a(L.x)) +g.(.s) C*(a(L.)) (26>
40 (1 -ch Ct)X>

where

Fl(!.s) - C*(a-) + 0i ccs(a(L-4)) - sii sm(a(L.t)) + ci cosh(agL.k)) + si sinh~al- )) (2.64a)
g =45 S'(a4) + cii sirn(aCL4)) - sh cos(a(L.4)) + ci sinii(a(L-4)) - st cosii(L- )) (2.6'b)

g3( .s) = .C*(o(L-t)) + cii cos(ak) sii sin(ak) + ci cos.i(cz4) + t sin.i(a ) (2.&4c)

j 01,s) = S+(oc(L-t)) + cii sin(a4) sit cos(czt) + ci sinii(a4) - st cosii(a4) (2.64d)

and the following trigonometric definitions have been made:



c"(at) cosh(cx4) + cos(ak) C'(a ) = cosh(cz4) - cos(ct4)
S+(cxk) =sinh(a4) + sin(ctr) S*(at) = sinh(a4) - sin(o:4) (.6a)
ch = cosh(zL) ct =cos(aL)
sh = sinh(aL) st =sin~aL)

For the beam element, the stiffness matrix is four-by-four, and is expressed as

FK6(s) K4(s) -K5(s) K3(s)-

K~) El K4(s) K2(s) *K3(t) Ks(S) (266K~)=A(S) -KS(s) -K3(s) 1(6(S) *K4(s) (.6
I K3(s) KIs *K4(s) )C2(S)J

where

K2(s) = -L (ch st - sh ct)

KB(s) = -L (ch - ct)

K4(s) = -Lsh s t (2.67a-e)

K5(s) = j- (sh + st)

K6(s) = -1 (ch st + sh ct)

A (S) = -L (I -ch ct)

This s,-i'f.,ss -natrix also reduces to the static, finite element stiffness mataix as the complex

frequency approaches zero. The effects of dis~ribuied forcing and initial cond.dons are determrined

L

qd(S) =2a(I-Chrt) aS- xs fd x~dx (2.68)

0

and the in:erpolazion matrix is most easily expressed by

I[ 1 (2.69r(x,s) = (D(x,s)['i(S)]' - 10 0 1 (269
1000001
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where

F x ax erfjx *cc'1
EaC aeax -lxeax - Iae'~

:ae Ele-ex .~Ia3cjIaX .3 - a-C J

andEl' 

ai

a pi P2 OP4 P31
4o(1 -Cp - 'p3  ie P1 -~ 'P2 (2.71)

4aICh ci) aP5 *jP6  aps *j;'

Loej'LP8 jeiiL P7 a jacLp 5 JykLP6

Ln this last equation, the following- definitions have been used:

P, = I -e.L(ct.si) P5 I _-~c~hjh

P2 = 1 ' eL (ct+sz) P6 I - eiQaL(ch+jsh) (.2
P3= C. aL -(ct-si) P7 e= a _-~ (ch-jsh) (.2

P4= e0 t c-s) p-=eo (ch-jsh)

As was the case %%ith the axial rod, the expressions for the internal energy of deformation

are complex, but nonetheless expressible analytically. The potential energy marix is

F FPI) F(O) *FO3) *Fo_)

-
2  

()T F.) (~) ()~Y(s, ' (2.713)

1~ 2 (~ F(.z) (s~o)* L2)
I-F03 -F(j)o) F(Qj) F( -jJp 0 o

IF(- ) ca 0 0 Fp2 F(2 o)] 0(c2  0~c2  0(.
F~l ~a)01 F- 2 F(a) Gca 2) F(.ja)

T~l, F-l I-l 01-[(a2 (a2)( 2 ) G(j201jT(s' (2.74)Fol Gol [ 0 0 0
IF(-ja1 ) G(-jal) 0 0 0 0 0 0

where
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= 0 L41.[ M (2.75)

and

01= a1I + a 2

02 = aX aX2
P3 = (A + ja (2.76)

P4= CC - jOC2

As wa-s the case for the axial rod. high and low frequency asymptotic app-Irations are

required for the beam element as well. These approximations allow efficient nmcrical

compu~a-on of thc required quanides withoit sacrificing numerical accuracy.

2 3 6 Hthh-requency elements

Ln many cases, the simple axial rod and Bernoulli-Euler beam models are insifficient to

capture the high frequency b-'avior of the 4stucural system. This is particularly noticable when

arnalIztr.g theuave-hke propagation of energvy associated %xiih impulsive distw-bance sources. For

these st:'.anons, mnore accurate s~icnrramodels are required.

The surmple axial rod model presented in Secion 2.3.4 predicts disperston-free propa~gationr

of elastic u. ayes at all frequencies. For rods of circular cross section, a better model s avZat!able if

a radial degree of freedo..~ s tnroduced, as sho~x n in Fig. 2-6. This is the basis for the MindLirt-

Hierrmann axial rod theory, %\hich can be expressed mathematically by the follou-ing system:

a2  
' G)-vlxs+ pa2s2v,(rt,s) = 2a v)xs(27a

a22  
2(x,s) 8 [S 0(.+G) +pa2S2]V2(xS) - 4ax) 2- V1(X~s) (2 7Tb)

in these equations, v, and v2 are the axial and radial displacements. respectively, a represents the

radius of the rod, X and G are the Lame constants of the material, and ic and x, are emnpirically



Fig. 2-6: Mindiin-Hen-mann rod model. Two deformationa] degrees Of freedom are allowed.

Poisson's ratio couples axial and radial deformation nmodes.

sI '. -03
II y-0 2

'0 0

00

320

Y:0



determined parameters. This model yields the dispersion curves shown in Fig. 2-7, and

reproduces the dispersion characteristics of the rod more accurately than the simple rod model.

The modified stiffness matrix for the Mindlin-Hemnann m,del is given in Appendix A.

A more accurate beam model is the Timoshenko beam, shown in Fig. 2-8. This model

allows for shearing of the cross sections Aith respect to the center-line of the beam, and accounts

for rotary inertia. The equation of motion is given by

EI-2-'(x,t) + pA '(x,t) - p1 l+~J-VX + 2 kv(x,t) = fd(x,t) (2.78)

where G is the shear modulus of the material and k is an empirically determined correction factor.

The Timoshenko model is capable of supporting both a shear and a bending mode of propagation,

as shown in the dispersion curves in Fig. 2-9. This model also places a finite upper limit on the

flexural propagation speed, which is unrealistically unbounded in the Bemoulli-Euler model.

Details on the stiffness mauix for the Ti' oshenko model are presented in Appendix A.

2.4 Two-dimensional elements

Two dimensional elements are modelled using partial differential equations with three

independant variables (two spatial dimensions and time). Therefore, the modelling of two-

dimension elements using the TEM methodology cannot produce exact results, as was the case for

one-dimensional models. The reason is that the dynamics equation remains a partial differential

equation in two spatial va:iables after the Laplace transform operation. As a result, there exist an

infinity of homogeneous solutions for any particular element model. To tis infinite set, these

corresponds an infrinty of Points along the boundary (which spans a one-dimensional domain) on

which boundary conditions must be satisfied. Nevertheless, by using a sufficiently large number

of homogeneous solutions and considering only a sufficiently large, but finite, set of boundary

points, an accurate TEM solution is possible. An example of boundary discretization, for the case

of in-plane deformation, is shown in Fig. 2-10. It is conjectured that, for a given amount of

33



0 - o

Nomlie .. .umbe

C4C

Noaed Wpaaver Speed

340



y

_V~

0,
a~

~V

(x1.yl) vl(x4,y4) w

(x2,y2) q (x5,y5) q

(x3.y3) (x6,y6)

Fig 210: Typical two-dixnensiona] element "ith three generalized displacemnts and forces at

each boundary point. In-plane deformation is assumed. The numbering scheme show'n continues

along the endre boundary of the element.

35



computational capability, this approach yields results superior in accuracy to the traditional FEM
methodology. We consider two two-dimensional elements here: a plate bending element and a
plane Sress elemenL

2.4.1 Plate bending element

Te TEM formulation for plate elements bears some resemblance to previous work by
Kulla (1990). The transformed equation of motion for a plate in bending is

DV 4 v(x,y,s) + ms 2v(x,y,s) = 0 (2.79)

where v is the deflection no"mal to the plane of the element, m is the mass per unit area, and V4 is
the biharmonic operator. Also, D is the bending rigidity, given by

D = ._Eh- IOV=12(t.v 2) (2.S0)

%% here h is the thickness of the plate and v is the Poisson's ratio of the material. Note that we have
assumed no dis-buied forcing and zero initial conditions. The homogeneous solution vector ts of
infinite dimension, with each env, haling the form

vH/(x.y,s) = 00Oy (2 8)

Substiruting this equa:ion into Eq. (2.79) yields the characteristic equaton

[ + -- "2
2  

(2.82)

"hus, for each complex.valued a (or j3), there exist four independent homogeneous solutions
corresponding to the four complex-valued P's (or a's) obtained from the characteristic equation.

To ob:ain an approximate plate solution, we must select a finite set of values for a (or A).
A general method of selecting this set has not been developed in this research. From this set, we
obtain a truncated solution vector, and the approximate expression for the deflection field becomes

v(x,y,s) = vH(x,y,s)Ta(s) 
(2.83)

36



The problem has now been reduced to detenmining the coefficient vector, a(s)' in terms of the

boundary conditions. A finite set of boundary points on the clement is therefore seled "Ce

total number of boundary conditions specified at these points, n, must equal the dimension of the

homogeneous solution vector, so that the problem is not underspecifitd. (Typically, three

boundary conditions are imposed at each point.) The boundary condition constraints can be

wrncn ini the form

W1(s) = L~y(v(xj.yi,s)] =L4;{1'H(xi,yi,s)]
T a(s) , i=l ,...,n (2,84a)

(i)

qj(s) = D,,4 )V(xi.yi.5)] = D N{'H(xi.yi. js) , ~~ (2.84b)

where L is a linear spatial differential operator (independent of s) relating the approximnate

solution, v, to the i'th generalized displacement on the boundary, wi. Simialarly, D~ reats; t

the corresponding dual generalized force, q,. Grouping Eqs. (2.84a) and (2.94b) into matrx fonrm

yields

w(s) = Y(s) a(s) , q(s) = 'l(s) a(s) (2.SHa,b)

where

T 1 sA (2.S6a,b)
4~ ~ ~j - ),iV~(s)=Is)

Finally, tire dynamic stiffness matrix follows from eliminating a from Eqs. (2.S~a) and (2.95b)..

K(s) =~)(j(] (2,87)

Obviously, the choice of boundary points affects the accuracy of the solution, and should

depend on the geometry of the element Unfortunately, a quantitative relationshp between the

boundary point locations and the solution accuracy has not yet been developed. However, a
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general rule of thumb is to space the boundary points more closely together near corners of theS element, where internal stress gradients are large.

2.4.2 Plane stress element

For plane stress problems, the difficulty lies in expressing the state of deformation in termsof a single scalar function, as there a.c two in-plane deformational degrees of freedom. To remedy
this situation, it becomes nece -y to derive a frequency-dependant stress function, from which allinternal stresses and both displacements can be determied. This is accomplished by working
diectly uith the basic plane stress relations, expressed in the frequency-domain. For linear,
isorropic, plane st:ress problems, the stress-stain relations are

ey =! (cy. v a (2 SSb)
-LTy= q = i-:-v 

(2.88c)

where E,G, and v are the extensional modulus, shear modulus and Poisson's ratio of the nmerial,
respectively. The equations of force equilibrium, expressed in the ftequency-domain, are

+ Y = pS2u, ar av2y = ps2 uy (2 89a,b)ax ayV ax ?y(28ab
where p is the density of the material and s is the (generally complex) Laplace variable. To these,
we must add the geometric relations

a, = 1 as au (2.90a,b,c)

and the compatibility constraint

aae, a2&, a2c
ay'  

Ty 
(2.91)

Substituting Eqs. (2 .88a) and (2 88b) into equation (2.91) yields

I



a& a2  !&20 + A t (+Vga (2.92)
__+ av -vax 8: y 

2  1 -

aY X Y ) = 
--

while adding the derivative of Eq. (2.89a) with respect to x to the derivative of equation (2.89b)

wAith respect to y produces

2_ __j +_, a~ a2c;N p2 a ' (2.93)
axay ax2

Eliminating Txy between the preious two relations results in

aO2 a2a~ a2C, a2o a A aux ~(.4
!n2+ - +ax +a-- = (l+Y)PSa + Lay)2.42Y 2  a),2 .a X2 -r y2 Pa. 2

Substituting Eqs. (2.8a), (2.88b), (2.90a) znd (2.90b) into equation (2.94) yields

3,5 + a2 v + 2  2 2

a).2  aA2  ax*2  a)2 (1v (a + j)(.5

which reduces to

IV2 .v 2) SI( +ar) 0 (296)

where V2 is the two dimensional spatial Laplacian operator. Becaust. Ca-nd cry are independent

variables, we sil need one additional equation, so as to uniquely identifypx and cy. The second

equation is obtained by subtacting the deivatve of Eq. (2.89b) with respect to y fiorn the

derivave of Eq. (2.89a) with respect to x, yielding

(l+v) ( - a,) (2.97)

This relation is equivalent to

aoa a2C aoa, a (avS
(1+v)E (ox. = -y V (0 y . a ) + __ y, -, + -+ .aS)

from wich we obtain

[,,. -a. , F[ 2 + 2] (aX + aY) (2.99)
[V2 20+v) 2 ] a 'y

j3



Equations (2.96) and (2.99) represent two linear parial differential equations in two

variables (the sum and difference of the normal stresses). This system can be reduced to a single

equation by defining a frequency dependent stress function, (D, so that the following relations hold:

(a F)= [V2 -2(1+v) E 'X (2.100a)

(ax -Cry) L2_ " 0(2. 100b)

Then, in terms of (D, Eq. (2.99) is identically satisfied, while Eq. (2.96) becomes

[V2 - 12[V2 - (DJ = 0 (2.101)

where

CC --- , cs = co = (2.102a,b,c)

The constants co, c, and co are readily identified as the propagation velocitie. of compression and

shear waves in a plane and compression waves in a three dimensional medium, respectively. It is

interesting to note that, under static conditions (s--0), equation (2.101) reduces to the familiar

biharmonic equation associated with the Airy stress function.

It remains to determine the physical entities of interest in terms of CD. In the traditional

stress function formulation, the stesses are expressed as derivative operators on (D. In order to

obtain similar differential operator expressions in this development, it is necessary to define a

related function, v, such that the following relationship holds:

= a - (2.103)
Wxy

The final form of Eq. (2.101) then btcomes

-[V2 .I9[V2 ] V-0 (2.104)

I Equations (2.100) and (2.103) can then be used to determine the normal stresses in terms of v.

4
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(X aa Lay2. 2 CJ y axay [aa2 ~gv (2.305.,b)

Now, combining Eqs. (2.88a), (2.90a) and the derivative of Eq. (2.89a) %with respect to x leads to

aa E a.) -a 2  (2.106)

Substituung Eqs. (2.105a) and (2.105b) into equ'ation (2.106) and integrating with retpect to both

x and y yields

=' [. V s 2 v(2.107

ax2ay2

Thus, Eqs. (2.105) and (2.107) are the des;,red relations between the stresses and v. Furthermore,

making use of Eqs. (2.SS) and (2 90) leads to

ta. r2 '2 ~2
VX = '2 0 v (2.108a)

ta = a.2  Va S2 ~2
a,2 a= 51 (2.108b)

T~hus, unlJe the tradttionml stress function formulation, this development also expresses the

displacements in terms of the fequency dependent function, v.

We are now in a position to apply the same methodology as was used for the plate bending

element. Once again, the assumed form of the homogeneous solution is

v1 t(x ,)s = x ly , i=l,.n (21309)

w\here a and 13 are functions of s, leads to the characteristic equation:

a[(a2+p1 2) j[a2+3,2) -E]= 0 , i=),.n (2.110)

Of the four solutions to this equation, two (a=0 and 03=0) are spurious. The other two determine

the relationship that must hold between a and 13 for each basis solution. The rigid body modes are
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I
accounted for by setting s equal to zero. As is the case for the plate bending elem-nt, the actual

choices for ;x and A, vary depending on the geometry of the element and are not discussed here.

2.5 Assembly Procedure
The assembly of individual elements to formn a global structural model is performed in a

manner similar to traditional FEM techniques. The element equations are first collected into a

large, unreduced matrix equation, mven by

=~l [*K2s - Ft , [ >s
K) (S)(K 2 (s) " ( ) (2.111)

\N here the superscripts identify the indi'iduza elements. The geometry of the interconnectons

between elements is specified by a conneci\ ity matrix, C, \x hich relates the local boundary

displacements of the elements to a set of g:obal displacements, v, (s), that define the global model.

[] = C wos) (2.112)

Figre 2-11 presents a simple structural system and the associated connectivity matrix. Piche

(19S6a) shoA s that, for small, linear displacements, the follo\ ing dual relationship holds:

q) (S)1

q(s) = CT • (2.113)
L q (s) J

Using these connectivity relations in Eq. (2.111) yields the unreduced system model

q (s) = Ko(s) , V(s) + q G(s) (2.114)

where
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'I (S C, q0 C
10 ~ ~ 1*)

At this point, if there are any global dsplacements that are constrained, they are removed from the

unred'aced model. This produces the desired global model, given by

q03(s) =K(S) wcs) + q(s) (2.116)

Equation (2.116) represents the global dynamic stiffness mnatrix for the structural model. It

is mathernaticaliy exact, and must be calculated at each frequency of interest. To compute the

response of the model to various excitations, we must solve for the global displacements. T1hus,

WG(s) = G(s) [qG(s) - qG(s)) ,C(s) =[KG(s)]" (2.1 17a,b)

Here, C(s) represents the global transfer function matrix for the model. If, in addition, the local

boundaiy displacements for a particular element are desired, a partition of the connectivity tnatrix

Lust be used:

wi(s) = C', G(s) [qG(S) - qr(s)](21)

Finally, the tntemnal states of a particular element are available ia
ui(x,5) = P(x,s) C, C (S) [qG(S) _ ql(S)] + U,,(xs(21)

In practice, the matrix multilications are never pet-formed literally. The connec6izy and

unreduced stiffness matrices are highly structured, making it possible to write specialized

al gorithms for each equation given above. This dramnatically increases the overall computation

speed of the assembly process.
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2.6 Applications

This section discusses some of the applicadons of the TEM modelling approach. AlI

applications require global model assembly, and, consequently, a general TEM structural

modelling code has been developed.

2.6.1 Modal frequencies

In many cases, all that is required from a structural model is a set of modal frequencies.

While the TEM methodology provides significantly more information, it is nonetheless poss,ble to

obtain modal frequencies using an algorithm developed by Wittrick (1971). This robust algorithm

uses information about the stiffness matrix, evaluated at a trial frequency, to determine the number

of modes %hose frequencies are below the trial frequency. Also required by the algorithm are the

modal frequencies of the individual elements with all boundary displacements constraned to z=ro.

The algorithm is designed for undamped structures only, and additional root searching techniques

are requ*-ed in the analysis of damped structures. Even in damped cases, however, the 2g1onthm

provides a reasonable inital estimate of the location of the damped modal frequencies. This

algorithm %as not implemenied in this research, as adequately accurate modal informa:)on ';as

available from plots of appropriate transfer functions, as described below.

2.6.2 Frequency response and transfer functions

The primary advantage of the TEM approach is its ability to provide the exact transfer

function matrix at any frequency of interest. This is obtained by numerically inverting the dynamc

stiffness matrix. The stffness matrix, K(s), represents a matrix of coi,-plex impedances relating

generalized boundary forces to boundary displacements. Consequently, G(s) is a matrix of

complex admittances, and is often caled the dynamic flexibility matrix.

The transfer functions of cantileveled axial rods and Bemoulli-Euler beam-s with various

damping models are shown in Fig. 2-12. For the rod, the input is an applied force c n the free end

and the output is the axial deflection at that end. Similarly, for the beam, the input is an applied
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I
transverse force on the free end and the output is the transverse deflection at that end. It should be

noted that the accuracy of these transfer functions extends arbitrarily high in frequency, insofar as

the mathematical models represent the actual physical system.

in order to demonstrate the capabilities and advantages of the TEM methodology, a

reasonably complex structure was analyzed. The Spacecraft COntrol Laboratory

Experiment (SCOLE) model is a three dimensional asymmretric structure proposed by

NASA as a design challenge by Taylor (1986). It consists of a rigid shutle and hexagonal

truss antenna connected by a flexible mast, Ps shown in Fig. 2-13. Previous authors have

treated the antenna as being rigid. In this effort, however, the flexibility of the antenna is

considered. The TEM model thus contains thineen beam elements (the mast and twelve

antenna elements) and a six degree of freedom rigid mass representing the shutle. In

addition to the six rigid degrees of freedom, a total of 52 partial differential equations,

incorporating axial, bending and torsional modes, are modeled. For comparison, the

SCOLE mcdel was also analysed using ASTROS, which incorporates a finite element

algor'thm similar to that found in NASTRAN. For the finite element model, the mast was

divided into 32 equal elements, and each of the antenna beams was divided into four

lumped elements, leading to 480 degrees of freedom.

Figure 2-14 compares the transfer functions from a torque applied to the shurde about the

axis of the mast to various points along the mast and antenna. The TEM and FEM models agree

rather well at low frequencies. However, it is clear that the finite element model becomes

inaccurate beyond the first few modes. What is considerably more strilzing is the relative

computation time requred to generate the transfer functions shown. On a micro-VAX machine, the

TEM analysis required approximately one hour of CPU time, in contrast with several doys of CPU

time for the FEM approach. This remarkable acceleration is due primarily to the reduction of the

total degrees of freedom in the model, which is associated with the lack of spatial discretization of

the beam elements. Since the computation time associated with matrix inversion is roughly
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proportional to the cube of the dimension of the matrix, the reduction in total degrees of freedom

has a profound effect on computaion time.

2.6.3 Tme-domain simulation

A final application of the TEM approach for structural analysis is in the time-domain

simulation of structural responses. This is accomplished via the inversc Laplace transform

algorithm presented in Sec. 2.2. The flexibility matrix is evaluated at a finite set of N frequencies,

and is multiplied by the global force vector, which contains the Laplace transforms of the forcing

functions eN aluated at those same frequencies. The resulting displacement vectors are then

collected, and the algorithm generates the time-domain responses evaluated at a set of 2N points in

time.

Fig. 2-15 compares the time-domain simulations of a simple axial rod and a .Mindlin-

Herrmann rod. The dispersive effects of the higher order model are apparent. Lthewise, Fig. 2-16

compares the Bemoulli-Ealer and Timoshenko beam models. Here, the effect of finite disturbance

propaga:ion velocity is the primary distinction between the models.
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3 MULTIBODY TEM FORMULATION

The TEM formulation described in Chapter 2 provides an exact PDE model of complex

stuctures with small motions, Because the nodal displacements are all referenced to the inertial

frame, the small deformation assumption for the elastic deformation also implies small rigid body

motion of the total structure. To allow larger ranges of motion at articulated joints, one can embed

the element reference frames at the undeformed element location, which may have both rigid body

rotational and translational motion. This type of approach has been used in multibody tools such

as DISCOS, TREETOPS, DADS and ADAMS. As shown in the following sections, the coupling

of the rigid and elastic degrees of freedom results in a set of integro-pardal differential equations.

The fo"mulation will be derived using a planar example. The extension to three dimensions should

be straightforw'ard.

3.1 Mathematical Model

3.1.1 Equations of.Motion

Consider a single uniform beam, cantilevered to a rigid mass, as shown tn Fig. 3-1. The

beam's coordinate frame is fixed to the rigid mass, which can undergo rigid body motion. For

simplicity, the motion of the system is assumed to be planar. Torques and forces can be applied to

cith r end of the beam'mass system. The equations of motion N' ill be derived using Hamlton's

principle.

The vector from the inertial origin to an arbitrary point on the beam is given by

= [X] + [X+\"] (3.1)

where 21 the vectors are expressed in body coordinates. The velocity of the point is given by

= [- ; v+x. vYJ (3.2)

where
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[c:)1 co (3.3)

The kinetic energy for both the rigid mass and the beam can then be ritten

L
1 2[V +V J +1 mf [V I + .2+ o2 + 2 rxVx- 2covyVx- 2vcovy

2 y 2Y XY X Yv2 + Y+ 2(X+V, 2+ vy + 2o(x uwy +2 o(x+,v,)]dx (3.4)

where M and I are the mass and inertia, respectively, of the lumped mass, and m is the mass per

unit length of the beam. The potential energy due to bending and axial extension is given by

L L
Cr 2 ~ 2 1 Cr - 2U-- El L5Vy@.)Jdx + FAJf v,(x)J dx (3.5)

6' 00

Virtual work due to the external loads is given by

6W = (F -F,2 )SX +(F.'Fy2)SY+ [Tl- T2 +XFVt Y(FxF 2)-(X+L)Fy,]0
+ [YFx2 - (X+L)F 2 -T,]SVy(L) -Fy2svy(L) (3.6)

One can then invoke Hamriton's priciple:

12., 
Sv,-0 0 x<L

f 5x=sY=ae=o } t=t 2  (3.7)

Substituting the kinetic and potential energies into Eq. (3.7), performing the appropriate variational

differentiation, and collecting the coefficients of 8X, SY, 80, 5vx, and 5vy, one can obtain the

folloving set of integro.partial differential equations:

L

(I+ImL3 )C+ImL2V'y+m 0 x+'y(x)dx-= TI-T 2 -LFy2  (3.8)
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L

(M~mL)V~n jF7xxFdx =(3.9)

L

1 M2 jo + (M+ML) '4. + mj'~x x=(3.10)

a2 (31

mx + m +m(x) = E , v (x) (3.11)

The nonl~inear~ terms have been ignored in the above equations, assuming small rigid body

velocities and small elastic deformations.

3.1.2 Solution for the Integral-Partial Differential Equations

Equations (3.S) through (3.10) are integral-differential equations, and Eqs. (3.11) and

(3.12) are partial differential equations. The set of equations can be reduced by transforming to the

Laplace frequency-domain, solving Eqs. (3.11) and (3.12) for vx and vYin terms of co, V, and

'., and then substituting the result into Eqs. (3.8) through (3.10).

For axial extension, let us deffine the axial state vector in Laplace transform space by

v,(x) EA2-v> )T (3.13)

Equation (3.11) can then be replaced by the axial state equation

5-Ua(x) = Ca Ua(X) + m VXP P314

which has the following matrix exponential solution:

x

Ua(X s) = eCau ,(0.s) + msVx Ca(xE) d4 p2 (3.15)

wehere
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I The integral of v, which is needed in the transformed version of Eq. (3.9), is then found to be

L x Lx

vx~~s dx =p 7 f eCax dx:u(O,s) +p V C 4d 2 (.7

Similarly, for transverse bending, let us define the bending state vector in transform space by

Ub(x) = vy(x) Ivy,(x) l 2 v,(x) El- vY(x)J (3.18)

The bending equation is then given by

aTUb(X) = Cb ub(x) - [m x s c + M sVy] P4  (3.19)

with the exponential matrix solution

ub(x,S) eCb" UO,. msc, sW eCb(x-) d4P4 - M V, jeCb(x-.)d4 P4 (3.20)

where

C =  00 0,0Gb Pl = HP 4 [ ](3.21a,bc)

-. 52 0 0 0M0

The two integrals ofvy in the Laplace transform of Eqs. (3.8) and (3.10) can then be %Tiutten as
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ITL x Lx

fvy(x~s) dx = , Pje~bd UbO,) ~ e

PT p sVYLxeCb(X4) d4 dx P4 (3.22)

IiI

Land

L x L x

- pT'ms yx 1eCb(x-.)d~dx P4 (3.2 3)

The integral expressions are substituted into Eqs. (3.8) through (3.10), and the coefficients

of sCo, sVX, sVy, s~v,, and s2vy are collected into a matrix. Equations (3.15) and (3.20) are

evaluated at x=L, the left and tight sides interchanged, and the co..ficients are again collected into a

marix, 0. This yields an equation of motion of the form

f s ,-,s) 1
0 u/s (Os)/-- f(s) (3.24)

LS2ub(O,s)j

where

I .(s) = [W(s) V,(s) V (s)]' (3.25)

f(s) = [TI- T2 -LFy. F 1 F .F2  FyI-F,2  Ua(L,s) T  Ub(L,s)T]T (3.26)

Let us now replace the axial states, ua(O,s), and the bending states, ub(O,s), on the left of

Eq. (3.24) by the nodal displacements at the two ends of the beam/mass model. The

!
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transformation is done by partitioned matrix solution of Eqs. (3.15) and (3.20) for EAv'(O) and
[Elv"(0) EIv'(0)], respectively. As a result, the axial and bending partitions of the force vector
are replaced by nodal forces. These nodal forces are equated to the external forces and torques by

the equations

[A [mL"V, (3.27)

E -T2 (3.28)
)'(L) L FY J

Terms in Eqs. (3.27) and (3.28) involving so, sV, and sVy are moved to the right hand side.
Finally, the equation of motion becomes

Ssw = f (3.29)

where

I= [yT S (vX0) Va(L)) s [v,(O) v(0) v.(L) v.(L)))T (3.30)

[T1 " rT2 ]
H,/F, FH o/ (3.31)1 =',J I Fy2J

Ht= [0 0-s 2 0 0 000 (3,32)01 0 0 Os2 000
i 0 00 oo-s2  0

HO = 0-1 00-s2 0 0 0 0] (3.33)
L-L 0-10 000 0s 2
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3.1. usnwcni ee cmnts model as one element of a larger miuss/frame structure,

as shown in Fig. 3-2. The external forces and torques at the two ends of the beam can be

expressed as the sum of applied forces/torques and constraint forces/torques:

+ T~~;1  (3.34)

T'a go0i+4'O2 Oj (3.35)

FY2J
where

r10 0 1
] 1j = 10 COS ell -Sin Gj (3.36)

[0 sin e 5 cosG15j

The vector g contans applied forces/torques, the subscripts (1) and Co) indicate inboard and

outboard joints, respectively, of the j'th body, the 2, vectors are the constraint forces/torques at the

joints, BI, is a matrix of kinematic coefftcients which transformns the constra.int forces/torques from

the coordinates of the inboard body to the coordinates of the current body, 01i is the angle at the

joint, and 0 is a selection matrix which picks out which degrees of freedom are to be constrained at

the joint. Without loss of generality, Eq. (3.36) has arbitrarily assumned that the constraint forces at

the inboard joint are in the inboard body's coordinate system. Subs titution of Eqs. (3.34) and

(3.35) into Eq. (3.29) give, for the j-th body,

I sw - + Hi5 B~0 T X15, + FH 05 601X01  (3.37)

where

=j H15 g15+ H05 g0 j (3.38)
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Fig. 3.2: Example joint connction.
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The summation in Eq. (3.37) is caried out overall of the outboard joints for tree topologies. Note

that, for an end body, there is only an inboard hinge and no outboard hinge, so that the last term in

Eq. (3.37) disappears.

The hinge Idnematics relate the absolute velocities of adjacent bodies to the relative

velocities at the adjoining hinge. For the inboard hinge of the j.th body, we have

0hr P)ltj + )l&tj = [Boj 0j wJ+ 1j., P[ Wj. 1  (3.39)

where

Boj - 0 (3.40)

-L0 0 11

[ L 0 0  00  (3.41)0 0001 0

The maix 0b is a selection matrix for the unconstrained degrees of freedom, a is a vector of

rheononic constraints, V3 is a vect.,~r of unconstrained relative hinge velocities, and Boj is a matrix

of idnematnc coefficients that relate body velocities to the outboard joint. For the base body (jl),

the last term in Eq. (3.39) disappears, because the base body's inboard boy is the inertial origin,

which, by definition, has zero velocity.

3.1.4 Recursion Solution for the Total Stucture

We now combine the dynamics, represented by Eq. (3.37), and the kinematics, represented
by Eq. (3.39). Let us consider an end body (j=e) and solve the kinematics equation for y.if

Ye B 1 - ['tie . + o e I .o,1 (I PI ,,. I (3.42)

L Equation (3.42) is augmented by the nodal velocities and re-written as

Iwe = 'epe + [00113e.- [c6ui &I .-Bo,-.1 1[ PJ we. 1] (3.43)

i
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where

%PC 0 1 0 (3.44a)
1 0 0 1

= [ s [v,(o) V.(L)] s [vy(o) v.(o) v(L) v.(L)] (3.44b)

Equation (3.43) expresses the body j velocities in terms of the velocities of its inboard joint and

inboard body.

Substitution of Eq. (3.43) into the dynamics equation, pre-multiplying by 'YT and solwng

for 03. gives an expression in terms of inboard body velocities and inboard hinge constaint

forces/torques:

. ]B.,o" [01. &1. - Bo,. [I P) e. .e] (3.15)

The unknown constraint torques can be solved for by pre-multiplying Eq. (3.39) by (3T and

substituting Eq. (3.37):

X11 = JC 1 , - ! [Bye 0] & ge- BO.t (I P] We.] (3.46)

where

= [ To[BIC 0]HIeBIC (3.47)

The unconstrained relative joint velocity term has disappeared because jDe and 0e are orthogonal

to each other.

Equations (3.43), (3.45) and (3.46) are the recursion relations for the end body. Given the

velocities of body e-I, one can compute the constraint forces/torques via Eq. (3.46), substitute into

Eq. (3.45) to get the relative velocities, and substitute into Eq. (3.43) to get the body velocities.
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To obtain the recursion for intermediate bodies in the middle of the chain or tree topology,

let us consider dhe e- body as the current body and relate its velocities to its inboard hinge. The

interconnection constraint fores/torques have been defined so that XjjlI = X01. We can therefore

substitute Eq. (3.46) into Eq. (3.37) with j equal to e-1, and rearmngt to yield

0.* swe. = ge~t + Hcl j~ T6'.e.1 X1'e.1 (3.48)

where

= J Ye ¢taBoc.j [I P] (3.49)
0

ge-1 = ge.-+ Ho.1  J't' fii " -" [B1 ¢ 0] gj (3.50)
0

Equation (3.50) is now in the same form as for an end body, and the same derivation can be

followed to produce a recursion for the e-1, as well as all intermediate bodies. Recall that at the

base body (j=l) the vector wj.1 , which corresponds to the inertial frame, disappears because the

inertial origin has zero velocity. This gives the initial value for the forward recursion to begin from

the base body to the end bodies. The multbody algorithm thus involves a'tack-' ard recursion to

compute the equivalent matrices and vectors, 0' and g', and a forward recursion to compute the

wj vectors.

3.2 Discussion

The mathematical formulation has been presented for a linearized model. The linearization

has been necessary for the Laplace transformation to be applied in solving the. PDE models. It is

felt that, even though the equations have been linearized, the range of angular motion that can be

simulated has been enlarged when compared to the canesian-based TEM models. The derivation

was shown for a planar model for ease of presentation. The extension to three dimensional motion

should be straightforward.

6
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The current formulation is applicable to chain and ae topologies. In order for this
formulation to be applied to trusses and frames, it must be extended to handle closed topological
loops. This type of formulation has been performed for modally based dynamic models by Chun
(1991) and can be easily adapted to PDE models.

Arbimny large angular motion of the total structure, as well as articulated joints, requires a
nonlinear model for the corect description of boih the dynamics of the motion and the tinematics
at thejoints. Future efforts should explore the use of perturbation techniqoes that allow ibc
Laplace transform to be used while still including the effects of the nonlinear terms.

I
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1- 4 CONTROL DESIGN BASED ON TEM MODELS

The exactness of the TEM formulation makes it possible to achieve remarkable performance

in open-loop slewing maneuvers of flexible sructures. This is the ,ubject of Section 4.1 of this

chapter. Unfortunately, because the TEM methodology does not immediately yield a state-space

representation of the structual system, traditional state-space control methods are not directly

applicable in the closed-loop case. (In actuality, no finite representation can exist, as the structural

model is of infinite order.) Methods for achieving closed-loop control solutions without state-

space models are discussed in Section 4.2.

4.1 Open-Loop Control

in this section, we develop an open-loop control algorithm that takes advantage of the

quality of the snctural model available via the TEM methodology. We restict attention to finite-

time, linear maneuvers with a quadratic cost functional. We also assume that the structure is

initially at rest. The desired teminal state is expressed by

yAtf) = Yd (4.1)

where tf is the maneuver time, y(t) is a vector of variables of interest, and yd contains the desired

terminal values of these variables. The elements of y could include, for example, the displacement

and ro=.on of a rigid mass on the structure, or the relative transverse deflection of a point on a

flexible member. The available control forces are also collected into a single vector, qc(O, of

dimension Nc. These control forces are then a subset of the global generalized forces defined by

the system model. In order that these forces be continuous in time, we must impose the additional

constraint

qc(O) qc(t1) 0 (4.2)L
Also, the quadratic cost functional is given by

6
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J = [ytj-.yTy[-(tf) Yd,, ,] + [q(tT ,qqq(t) + 4o.,tTA ,l,)] d, (4.3)

where R)I. Rqq, and Rqq are symmetric, positive definite weighting matrices.

Ve must now express the output vector in terms of the control vector via the system

dynamics. This is accomplished using the convolution integral

y(to = o (t-') qc r)d (4.4) _

where Gy(t) represents the impulse response matrix relating y(O) to qc(t). This convolution integral

is calculated efficiently using the inverse Laplace transform algorithm of Sec. 2.2:

y(t) = I;' [G (s) qcds)] (,4.5)

4.1.1 Band-limited control approximation

By substituting Eq. (4.4) in Eq. (4.3), we observe that the cost functional depends on q,(t) j

only. Setting the first variation in cost to zero therefore yields

7 r t[ -",I

= j'(t-t) qc(t) dt- d] Ry4G(tt ij) t
tf

jf q~()Rq~q( tj(t)T Aqq5qc(t)] dt 0 (4.6)

The problem then lies in solving this equation for qc(t). Unfortunately, this is not a simple matter,

as both the control vector and its variation appear within the integrals. However, if the control

inputs are band-limited (as is often the case), a numerical solution is easily obtained. Each control

input is first approximated by

qci(t) = fq(t)Tci, i1.
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where fq(t) is a vector of known basis functions of time (usually sine and cosine funciions), and q

I is a vector of undetermined coefficients corresponding to the i'th control input. The entire control

vector can then be conveniently expressed as

qc(t) = Fq(t) c (4.8)

Iwhere the following definitions have been used:I T 01 rl]
Fq(t) = [f(t) q(t) TCT C (4.9ab)1 0 (.;r]a Cb)

Using this band-limited approximation, the optimal control problem is reduced to determining the

coefficient vector, c. The variations in the control vector are then

Bqc(t) = Fq(t) c, S Ic(t) = Fq() &c (4.!0a,b)

and the constraints given by Eq. (4.2) reduce to

Fq(O) c = Fq(tf) c = 0 (4.11)

Furthermore, the vector of desired outputs is expressed by

y(tj ) = Y(tf) c (4.12)

where Y(i) is the basis function response matrix, and is given by
t

Y(t) = Gy(t-c) Fq(c) d't = L'I [Gy(s) Fq(s)] (4.13)

I 4.1.2 Solution without minimization

j Grouping Eqs. (A.1l1) and (4.12) yields the matrix equation

[Fq(o) - (4.14)
LFq(tf) J
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lIfthe nuimberof desired Outputs and the number of unknown coefficien-t aire such that ther tr-ix
in hi.; eqLation is square, then c is uniquelytdeteiimined. Typically, however, th=r art many
elements in c, so &,?t Eq. (4-14) is underdectermined. Conseqrvuttly, many choices forc w'ill meet
the terminal constraints. We therefore have some freedom in choosing which particulpar to use.
For a g!iven problem, the particular choice nininm5zes some predefined cost fujnction?.!, which
provid s a meascre of nominalper'on-anio. The n-xt two subsections describe 'Wo such cost
functionals.

4.1.3 Nfiitizadion Iith point consoints
We first use the cost functional given by Eq. (4.3) and adjoin the constraints given by Eq.

(4.11) via two Lagranzge multiipliers, X. and Xj, Takdig variations in c yields

6= [Y(*?fc - Id) TR).yY(tt) 8c

+ ?Fq(0)8c + X4fF,(ti)&c + &4FAO) t)4q(tf c =0(.

leading- to the following matrix equation:

XV Fq(0)T Fqo,,i) T C ifRyL F(0) 0 oi 7  ft) T y l (4.16)Fq(tr) 0 0Jx~ L a

where

If

NV - YO1) r R.YY (tr) + J [pq(t)TRqqFqQ) + P q(t)T% q~j) dt (4.17)

This is a sym'metric system, and can be: solved using standard linear algebra routines.
A unique advantage of this approach is that it readily accoznodates penalties in higher

derivatives of both control effort and structiral deformation. In the frequency-6omain,
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differentiation merely requires multiplication c f the'data by the Laplace transform variable. The

I- inverse transformation then produces the derivative of the original signal. Higher order derivatives

are obtained by multiplying by higher powers of the complex frequency. Incorporating higher

derivative penalties in the traditional optimal control formulation is considerably more difficult.

It should be noted that the only approximation in the entire development involves

expressing the control inputs m terms rf the basis functions. The dynamics of the entire structure

are accounted for, since the impulse responses are exact (insofat as the original equations represent

physical reair,). Also, the structural deformations are assumed to be small, so that linearization

does not introduce significant errors. As a result, large angle slew maneuvers are not inclided in

this class of problems. It is possible, however, to express structural deformations with respect to a

nominal condition during a large angle slew, and then linearize about that reference, as discussed in

the previous Chapter.

In an earlier analytical study by Skaar (1984), the open-loop control of a rigid mass with a

flexible appendage, shon in Fig. 4-1, Aas studied. In his xork, structural deformation penalties

were not incorporated into the cost function; rather, the tern/inal conditions were adjoined to the

cost fnctional as conraints. Skaar deri% ed analytical expressions for impulse responses of the

simple mass/appenda.ge smcture and thus obtained closed form optirral control solutions for the

structure. Though successful for this application, his approach does not readly generalize for

more complex strctures. In contrast, the formulation presented here readily generalizes for

realistic complex structures. Slaar's example, however, is used as a first example to validate the

optimal control formulation.

The maneuver involves translating the mass a distance of 10 meters along the axis of the

flexjble appendage, bringing it to rest with minimal residual energy and post-maneuver drift after

20 seconds. The first case places terminal penalties on the final position and velocity of the rigid

mass and on a point 4/5 of the length along the flexible appendage. A small penalty is also placed

on control rae, and 17 basis functions are used to approximate the control input. The results,

shoA n in Fig. 4-2, indicate that the terminal conditions are matched, and residual energy is
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Figid Mss Flexible Appendn~o

m = kg/

EA =0.05 Nt
El = 0.05 Nt-M2

Fig. 4-I:, Simple mass/flexible appendage snmtra model.
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negligible. In the secbnd case, the member stiffness is reduced by a factor of four, so that the

printiuy modal frequency of the structure corresponds approximately with the frequency of the first

basis function of the control input. The results of this case, presented in Fig. 4-3, indicate that the

control input has been adjusted so that excitation of the primary mode of the structure is

suppressed. Again, the terminal conditions are matched, and residual internal energy is negligible.

The second example is the SCOLE structure analysed in Sec. 2.6.2. The maneuver

presented here consists of a ten second, 0.1 radian rotation about the z-axis of the shuttle. This

maneuver is a purely academic exercise, and is unrelated to the maneuver specified in the original

design challenge. For the first case, torque controls directed along the z-axis are placed at either

end of the mast. Due to the asymmetry of the structure, gyroscopic coupling is expected.

Consequently, roll and pitch torque controls are also located on the shuttle. The cost of control

effort is equally weighted among the control inputs. Equal terninal magnitude and rate penalties

are applied to the roll, pitch and yaw angles of the shuttle, as well as the torsional deformation of

the mast at its midpoint and at the mast/antenna junction.

The results of the first SCOLE slew are shown in Fig. 4-4. It is clear that, although the

shuttle has rotated the prescribed amount, there is a small amount of residual torsional energy in the

structure. This energy is due primarily to the deformation of the antenna and mast at the terninal

dm:. Also, the set of controls utilized are incapable of suppressing out-of-plane deflection of the

antenna, which is caused by the asymmetry of the structure.

In order to suppress this residual energy, additional controls are placed on the antenna. In-

plane forces ae a ailable at the mast/antenna junction and directly across the antenna. In addition,

an out-of-plane thruster is placed at the later location. Furthermore, additional penalties are placed

on antenna deformation. The improvement in the slew response can be seen in Fig. 4-5. For .his

A maneuver, most of the torque is generated by the antenna thrusters across from the mast. In

reality, this distribution of control effort would be unwise, as it would lead to excessive stress in

the masz/antenna junction. Also, as shown in the figure, this trajectory causes a lage amount of

torsional deformation of the mast. By adjusting the relative weights on the controls and structural
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deformation outputs, it is possible to converge upon a more realistic trajertory. However, this

control solution provides an adequate demonstration of the formulation presented here.

4.1.4 Minimization of flexible energy

Another method of obtaining an optimal solution consists of minimizing the residual

flexural energy within tht structural elements at the terminal time. This is achieved by expressing

the generalized boundary displacements of the i'th element in terms of the undermined coefficients:

wi(s) = Ci Gq(s) Fq(s) C = Hi(s) c (4.18)

Maling use of Eq. (2.43) then yields

I TE2(t) = jc E0 (t)c (4.19)

where

E'(') = k(t) f f Hi(s 1 )T 2(ss's) Hi(s2 )eJ( I' 2)'d~ 1 d (4.20)

Included in the cost functional are the weighted penalties on residual energy for a set of Nf flexible

elements and weighted penalties on control effort and control rate. To this we adjoin the desired

terminal conditions and the constraints on the controls at the beginnig and end of the maneuver.

The cost functional is thus

N1 ~~tf () ~ )
J = ri Ei(tf) + [ qc(t)TRqqqc(t) + tlc(t)TRqqlc(t] dt

+ X'[y(tf)-Yd] + XTqc(0) + XTqc(t) (4.21)

Setting variations in J due to c to zero yields

I
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Y!-!" 0 [Yd]
FYQt 0 0 0 I I 0  (4.22)

[Fq(Ot)0 0 0 1 / 4.

where

Nf 
tf

W= r i E (tf) + J [Fq(t)TRqqFq(t) + Fq(t)Tfqqlq(d) dt (4.23)
z=I

Again, this system is symmetric, and can be solved with standard linear algebra software

packages.

The minimum residual energy approach was applied to the simple mass/appendage system

studied in the previous section. Two marpuvers were performed, both with a prescribed final

displacement of 10 meters after 20 seconds. In the first maneuver, the desired final velocity of the

rigid mass was zero, while in the second, the final velocity was 1 meter/second. The results of

these maneuvers axe shown in Fig.'s 4-6 and 4-7. In each case, the residual energy is seen to be

negligible.

The same structure was used to perform rotational maneuvers. In this case, the bending of

the flexible appendage was considered. A 0.1 radian slew with both zero and 1 radiarsecond

terminal angular velocity were studied. The results, shown in Fig.'s 4-8 and 4-9, indicate that

performance comparable to the axial cases was achieved.

The minimum energy cost functional leads to system trajectories with far less residual

energy than those obtained via point constraints. Furthermore, minimization of total deformational

energy also avoids the problem of selecting which points to constrain. All that is required is a

relative cost weighting for each flexible element of interest. However, because the calculation of

in.'=al energy involves a double integral, the minimum energy approach requires more

computational effort. The minimum energy cost functional was iot applied to the SCOLE

maneuver problem.
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4.2 Closed-loop control

H The closed-loop control of infinite order systems expressed in the trarsformed domain is a

considerably more difficult pTblem. The exact dynamics are available in the frequency-domain

only, and no finite dimensional state space realization is possible. As a result, full order

techniques, such as LQR and LQG methodologies, are not applicable. However, the control

problem can be posed in a form amenable to frequency-domain design techniques. It is assumed

that, for a given structural model, a set of disturbance forces act at global element junctions, and

performance is measured in terms of some set of global generalized displacements. The control

objective is then to minimize, in some sense, the transfer function from the set of disturbances,

w(t), to the performance measure, z(t). This is to be accomplished by a finite order controller

which has available as inputs a finite set of measured generalized displacements, y(t), and acts on a

finite set of actuators, u(t), located on the structure. The situation is depicted in Fig. 4-10. The

transfer functions from disturbances and control inputs to the performance metric and measured

outputs are easily obtained as partitions of the dynamic flexibility matrix. Note that this control

problem is in the "standard form," which has been studied extensively by Francis (1987) and

Doyle (1989) for finite dimensional plants.

For this problem, the transfer functions are partitioned as

z(s)] =G, (s) G,(s)l rw(s)l (4.24)
y(s)J Gy(S) Gyu(s)j Lu(s)J

It and the controller is expressed as

u(s) = G.(s)y(s) (4.25)

The closed-loop transfer function is then given by

i Tz.(s) = G2w(s) + G2u(s)G.(s)[I - Gyu(s)G,(s)]' 1Gy,(s) (4.26)
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41.1

U(S) ~ ~$~~y(s)

Fi.41:Tepooyical control problem posed in the standard formn
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The design objective is then to determine G,(s) such that the closed-loop system is stable and

meets the performance specifications. Although geneial solutions have been obtained for finite

dimensional systems;the situation for infinite dimensional systems Is much more complicated. As

Ii a resu only simple systems have been considered. For example, the coprime factorization

technique is applied to a single torsional element in Piche (1986b). The extension of such an

Il approach to complex structures would indeed be a significant achievement.

It is assumed that the controller has finite order, so that it can be physically implementable.

The n-th order controller has the state-space form

iix(x,t) = Acx,(t)'+ Bcy(t), u() = Ccx.(t) + Dcy(t) (4.27a,b)

[H which is represented in the frequency domian by
Gc(s) = C(s - AC)''BC + Dc (4.28)

Tare objective, then, is to find the matrices A, B, Co, and D€, that both stabilize the closed-loop

system and minimize T,,(s) in some sense. A method of selecting the order of the controller is

also required. The only data available are the partitioned transfer function matrices, which are

mathematically exact at all frequencies. The optimal solution would then be valid for the exact

mathematical model, rather than some truncation of it. As a result, the modelling error is restricted

to the deviation of the mathematical model from the actual physical structure. This will result in a

less conservative control design approach and, consequently, enhanced performance.

4.3 Limitations of the TEN Control Design Methodology

Although the control designs based on the TEM methodology have demonstrated

remarkable performance (at least in the open-loop case), it is important to note some limitations of

L this approach. First, the control actuation is available only on the boundaries of the structural

elements. For a small number of actuators, this may be overcome by dividing each element into

smaller sub-elements at the point of control actuation. If many actuators are employed, however,
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ii
this ip~roach is clearly iot feasible. An~iher limitation is the requirement-that the initial conditions

' izero. Only in this way was it pssible to obtain a simili txpression for the control solution. j
Nodiero inital c6nditlons introduce an extra'term, qd(s), in'the dynamic stiffness equation for each

striiural element. In addition to making the optimal control expressions more complex, this term
imust be co'mdpsted by integrating over the domain oftthe element~as described in Sec. 2.3.1.

Consequently, the treatment of initial conditiohs (and distributed forcing, for that matter) increases

the computation time associated with the TEM approach considemably, as a numerical integration is

required for each element at each complex frequency of interest.

Some of these limitations can be overcome by working with the original PDE for the

element, expressed in the time-domain. This forms the basis of the direct PDE modelling

approach, which leads naturally to a different type of control theory. The direct approach is the I
subject of the next two chapters.

8I
I

I

ii

ii
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5 :DIRECT-PDE MODELLING

Ali physical systems are distributed in nature. This fact is a consequence of the laws of

phiysics, Which always take the form of a set of field equations which must be satisfied over each

Ii infinitesdtmal region in the spatial domain of interest. As a result, any exact model of a physical

system must be of infinite order. Lumped parameter models are, in general, low-frequency

approximations to these field equations. Examples include lumped electrical component models

(such as capacitors, resistors and inductors), rigid body structural idealizations, and finite element

models. In this last example, the finite order approximation is achieved by restricting the

Ii [deformational degrees of freedom of the system rather than employing a low-frequency

approximation directly, but the result is essentially the same: The model fails to recover the high-

- frequency dynamics of the system. In this chapter, we introduce the concept of a distributed,

Iinfinite-order model of a system, which retains the dynamics of the physical system at all

frequencies. This approach, hereinafter referred to as the direct PDE modelling approach, is

superior to theTEM approach when forces of a distributed nature act within the spatial domain of

the structural elements. Such forces include aerodynamic and gravitational loads, inertial forces,

and distributed control actuators.

Distributed system models can be characterized in either of two forms. The first is an
integral form, in which the response of the system at a particular time is determined by integrating

(with respect to time and/or space) the product of the distributed forcing inputs and a Green's

function kernel. Here, the Green's function relates the response of the system at some arbitrary

I point and time to an impulse applied at some other point and time. Thus, this characterization is

global in nature. Given this approach, it is possible to develop, for example, a distributed control

theory. The work of Brogan (1968) proceeds along these lines. However, the Green's functionrfor an arbitrary system is extremely difficult to obtain. Indeed, analytical expressions are only

available for the simplest of cases. The other characterization is differential in nature. Here, partial

differential equations, describing the local behavior of the system, are used to develop a system

model. This characterization is mush easier to obtain, as the physical laws that describe the system
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are always local. Consequently, more emphasis has been placed -on developing the differential

api6ich forcon ol system design. BrAwell (1981), forexample; uses the differential

desciptioi to obtain solutions to the boundary control of a simple flexible system. The differential

d-i6ription of distributed systems will be used here throughout: .

5.1 One-dimensional eleinents I
heref~d~ o reo acmout fo eea h:.iesialdfrlirHwvr oFor a structural sy'em undergoing small deformations, the underlying differential

equations are, of course, the equations of elasticity. A completely rigorous and exact linear
structural model must therefore account for general three-dimensional deformation. However, for

lohg, slender structural elements, the deformation is primarily a function of position along the

element. The variation in deformation with respect to the other two directions can usually be

expressed in terms of the deformation along the length of the element. herefore, only one spatial

coordinate is needed to describe the dynamics. This is the basis for the axial rod and Bernoulli.

Euler beam models discussed in Chapter 2. While these idealizations fail to hold at extremely high

frequencies, their ranges of validity are much greater than those of finite-order representations,

such as finite element models.

5.1.1 General Formulation

We will restrict our attention to one-dimensional, linear, time-invariant distributed systems.

Such systems can be written in the form

i(x,t) = Lx(x)x(x,t) + B,(x)u(x,t) + Dx(x)n(x,t), xe [0,1] , te [0,**) (5.1)

where x is the state vector, u is the distributed control input, and n is the distributed disturbance -

input. In contrast with lumped-parameter state space models, these vectors exhibit both spatial and

temporal dependance. Also, Lx, B, and Dx are linear (possibly spatially varying) matrix

operators. Note that the spatial domain hs been normalized to unity. The boundary conditions are

assumed to be homogeneous, and are expressed as
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x(0,t) = x(,t) 0, te 0,-) (5.2)

[1 The entire development presented here applies to modelling of systems with homogeneous

p boundary conditions only. It is therefore assumed that no control or disturbance forces are applied

at the boundaries of the system. Finally, the initial conditions are expressed as

Sx(x,O) = !(x), xe(0,1] (5.3)

5.1.2 Bernoulli-Euler Beam Example

One of the simplest examples of a one-dimensional distributed parameter system is a

Bemoulli-Euler beam. A diagram of the physical system is shown in Fig. 5-1. The requirement

that the boundary conditions for the mathematical model be homogeneous corresponds to pinned-

pinned boundary conditions for the beam, as will be shown in the next subsection. In addition to

casting the equation of motion of the beam in the form given by Eq. (5.1), the following

subsections describe a method for simulating the response of the beam system to various control

and disturbance forces.

5.1.2.1 Normalization of Equations of Motion

In dimensional form, the beam dynamics are described by

El(x) -vd(xd,td)I + m(x) -Vd(d,td) = fd(xdtd) Xde [O,L] (5.4)

where xd and td are the dimensionalized spatial and temporal variables, respectively, vd is the

transverse deflection, fd is the applied distributed control and/or disturbance force, L is the beam

length, EI(x) is the bending stiffness, and m(x) is the beam mass per unit length. To this equation

[ we must add the boundary conditions

adOtd 2 2_ =~ 55
Vd(~td) vd(O,td) = Vd(l,td) = Vd(l,td) 0 (5.5)
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and the initial conditions

Ii
' 1] We now introduce nondimensional independar variables according to

and the normalized deflection and distributed force as

v(x't) = !Vd(xd,td), f(x,t) = -3fd(xd,td) (5.8a,b)

We can also parametrize the bending stiffness and mass per unit length by

Ii '(x) = (0)' P(x)= M (5.9a,b)

1 where il and 3 are nondimensional functions. These normalizations lead to the following

nondimensional form of the equation of motion
L

a2 )W a-2 v(x,t) + Ia2 v(x,t) = f(x,t) = fu(X,t)+fn(X,t) (5.10)

Here, fu and f, represent the normalized distributed control and disturbance forces, respectively.

I. To obtain the state space representation of the dynamics, we define the state vector and control and

disturbance scalars by

= -~) '' v(x,t)1

[ x(x,t) L V(x,t u(x,t) = fu(x,t) , n(x,t) = f(x,t) (5.11 a-c)
~ V(X't)

[ The first and second elements of x correspond to the normalized curvature and velocity of the

bending motion, respectively. These choices for the state vector components ensure the well-

posedness of the system model, as explained by Richtmyer (1957). Equation (5.5), which is a

consequence of the pinned-pinned boundary conditions, ensures that x(0,t)=x(l,t)-0 for all values

oft. The equation of motion then takes the form of Eq. (5.1), with
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L .(x) = . JaX2] b.(x) dx(x) = (5.12ab) 0 a
5.1.2.2 The Case of Curvature Actuation

In most active structural control applications, it is difficult to implement lightweight inertial I
force actuators. This is particularly challenging for space-based structures, where stringent I
constraints are placed on structural mass. As a result, practical structural dontrol actuators are

usually imbedded within the structure itself, and are capable of producing only relative deformation

between points on the structure. For example, deLuis (1989) demonstrates how an embedded

piezoelectric actuator can be used to induce a local curvature in the beam. Many such actuators,

placed along the span of a large, beam-like structure will then approximate distributed curvature

actuation.

It is therefore useful to develop the model of a beam with a distributed curvature actuator. .

Such is the limiting case of a beam with many embedded piezoelectric actuators distributed along

its span. For this system, the equation of motion is modified to [
a2 32 1 i 

2  2

[ (x) -Lv(xt)] + -- v(x,t) = - m,(x,t) (5.13)

where mu(x,t) represents the net action of the distributed piezoelectrics. The state vector, x, is

unchanged, as is Lx, but u and b, must be modified to

u(xt) = mu(x,t), b" [ (5.14a,b)~dx II

5.1.2.3 Numerical Simulation Using Laplace Transform

Given the beam dynamics model, there remains the problem of actually simulating the

response of the beam to control and disturbance forces. Various methodologies exist to achieve I 1

this end. At one extreme, the dynamics equation is discretized in both space and time and then
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integrated'forward in time. This constitutes a pardaldifferential equation with mixed boundary and

[,initial conditions. Although this method is widely used, it requires rather fine discretizations in

both the temporal and spatial dimensions to achieve accurate results, and errors tend to accumulate

It in time. At the other extreme, one can Laplace-transform the equation into the s-domain and search

for analytic solutions. However, due to the distributed nature of the control and/or disturbance

forces, this transformation results in an integro-partial differential equation rather than a simple

ordinary differential equation (as would be the case for boundary forcing only). Due to the

generality of the distributed forces, a general analytical solution is not available.

I In order to achieve accurate solutions with relatively coarse discretizations, a third

alternative is proposed. The dynamics equation is Laplace-transformed, resulting in the above

mentioned integro-partial differential equation. At each desired complex frequency, a finite

I differencing scheme is used to solve for the displacement field. The data from a set of frequencies

is collected, and the numerically robust inverse Laplace transform algorithm described in Section

2.2 is used to convert the data back into the time-domain. Because the transformed equation

represents a boundary value problem, it is anticipated that its approximate solution will be more

stable and accurate than the corresponding solution to the mixed problem associated with time-

domain integration. The stability and accuracy of the inverse transform algorithm has already been

demonstrated in Chapters 2 and 3.

The development presented here corresponds to distributed force actuation only, and the

case of distributed curvature octuation is addressed in Appendix B. We first transform Eq. (5.10)

Rinto the frequency-domain:

L'[q(X ji ~(x, S)] + ~ S2 (X,s) - s v 0 (x) - O(x)] u ~x,s) + f,(x,s) (5.15)aX2 a.2 - I 2

The normalized frequency, s, is related to the dimensional frequency, Sd, by

1 5 = Sd\J - (5.16)
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In this way, we can relate the transform pair v(x,td) - v(x,sd) with the pair v(x,t) - (x,s). We

now assume that the feedback control law is distributed and linear, and relates the components of

the state vector to the control input by

fu(x,) = -J k(x,y)Tx(y,t) dy

o[kix~y) .(y) -v(yt) + k2(XY) lv(Y1t dy (5.17)

In this last equation, kl(x,y) and k2 (x,y) represent feedback gain kernels. This type of control law

will arise in the next chapter as the optimal solution to the distributed control problem. Substituting

the Laplace-transformed version of this control law in Eq. (5.15) leads to

IqX) k . 2 + (xy) -- ( N(y,s) + s k,(x,y) (y,s)] dy

= f,(x's) + AL( v'o(x) + s V0(xI +J j k2 (x,V) vo(y) dy (5.18)

The term involving k, in this equation can be integrated by parts twice so that the Jerivadve with

respect to y operates on k1. The boundary term arising from this operation vanishes due to the

homogeneous boundary conditions. By making the following associations

k(x,y,s) = [kl(xy) 11(x)] + s k2 (x,y) (5.19a)

i(x,s) = in(X,s) + i(x,s) + ic(X,S) (5.19b)

tc(XS) k2(Xy) vo(y) dy (5.19d)

the dynamics equation reduces to O]

95



I ii

A2'[() x 2 - (x,s)] +-L.cx,s) + k(x,y,s) %O,s)dy f(x,s) (5.20)

A similar result is available for the case of curvature actuation, and can be found in Appendix B.

Equation (5.20) must be solved numerically for each value of s needed to construct the time

Iresponse. To do so requires a discretization of the spatial domain into N uniform subregions. The

boundaries of these subregions are given by

xi  i=0 ..., N (5.21)

JI We can now use the values of f(x,s) evaluated at these xi to determine (x,s) at these same

II coordinates. By defining the vectors

- i(s) {( :,q,s)} , 1(s)- f(xi,s)} (5.22a,b)

and the matrix

K(s) = [k(xi,yj,s)] (5.23)

1an approximation to Eq. (5.20) is easily obtained. The first term is replaced by the finite difference

approximation

a2 [ v(x) '27(xs)] - N4 DHD'(s) (5.24)

where D is a constant banded matrix of coefficients representing the second derivative operation:

1 2-2 3r-1 2-1

D . . (5.25)
0 -1° 2-1

and H is the discretized representation of TI(x):

I H = diag [1I(xi)] (5.26)
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The second term in Eq. (5.20) is trivially approximated by
$2 .j_

_L2-3(x.s) - s2 B ,(s) (5.27)

where

B = diag k FLi) (5.28) 1
Finally, the integral term is replaced with a summation: I

k(x,y,s) ,(y,s)dy - K(s) i(s) (5.29)

Collecting ternis, the discretized equation becomes

[N4 DHD + s2 B + -K(s)] i,(s) = n(s) +f,(s) + !C(s) (5.30)

Thus, a single matrix inversion is required at each complex frequency. If the frequencies required

for the inverse Laplace transform are given by t
s = s1 . sn (5.31)

then the solutions of Eq. (5.30) can be grouped according to

V = [ (si) ... (sn)} (5.32)

The time-domain responses at each xi are then obtained by applying the inverse transform

algorithm to each row of V.

Figure 5-2 presents the response of a uniform and a linearly tapered beam to a sinusoidal

inital displacement and zero initial velocity. (The plots display time and x-coordinate along the

beam as independent variables, with transverse deflection along the vertical axis.) For the uniform

beam, these initial conditions correspond to the second mode of vibration. Consequently, no other

modes are excited, as can be seen in the figure. For the tapered beam, other modes become

involved, as the individual mode shapes are more complicated. Figure 5-3 displays the simulation I
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~I.

results for a uniform beam impacted with a unit ransverse impulse at its center-span. The plot on

the lft corresponds to a long time scale, and indicates that the resulting motion is predominantly

composed of a first mode vibration with odd harmonics. The plot on the right, which corresponds

to a shorter time scale, accentuates the wave-like characteristics of the response. The disturbance,

which begins at the center-span, quickly moves towards the boundaries and reflects. These

reflections eventually set up the complex modal motion observed in the long time scale plot. Note

that, for a short time following the impact, the deflection of the center-span varies as the square-

root of time. This behavior agrees with the beam theory presented by Nowacki (1963), where the

response of a beam of infinite extent is addressed. Note also that the disturbance reaches the

boundaries almost instantly, which is characteristic of the Bernoulli-Euler beam assumption of no

cross section rotary inertia. This effect is more apparent in Fig. 5-4, where the responses of a

Bemoulli-Euler beam (on the left) and a Timoshenko beam (on the right) are compared. The

simulation of the Timosherko beam is discussed in Appendix C. For these simulations, free-free

boundary conditions are assumed, and the impact occurs at a boundary. The effect of rotary intetia

is immediately apparent, and manifests itself as a finite disturbance propagation velocity in the

beam. Also, the reflection of the shear wave p:opagating through the Timoshenko beam can be

seen in the plot on the right of the figure.

5.2 Two-dimensional elements

Many element models require two independant spatial coordinates to specify the domain of

[ the element. These models include membranes, plates in bending, shells, and plane stress

elements. In all cases, the third spatial dimension is of sufficiently small extent in comparison with

the other two dimensions so that a two-dimensional idealization is reasonably accurate. These

models have the general differential form

x(x,y,t) = Lxx(x,y,t) + Bxu(x,y,t), x,ye [0,1], te [0,*-) (5.33)

Two examples of two-dimensional elements are given below.
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5.2.1 Membrane model

The normalized equation of motion of a membrane is given by

-V2 v(x,y,t) + (x,y,t) = f(x,y,t) (5.34)

where v represents the normalized deflection, f represents a normalized force per unit area, and V2

is the Laplacian operator. Taking the deflection and its velocity as the state variables:

rv(x,y,t)1
x(x,y,t) = I(Xy,t) u(x,y,t) f(x.y,t) (5.35a,b)

and defining the operators L, and b, by

Lx- [°02 11. b -[o(5.36a,b)

leads to the relation given by Eq. (5.33).

5.2.2 Plate model

Another two dimensional element is a plate in bending. Here, the equation of motion is

Ii V4 v(x,y,t) + (x,y,t) = f(x,y,t) (5.37)

In this case, the following state vector and forcing input definitions are appropriate:

[ x~~y~t) rv 2v(x 'y 't)1

x(x, [ J(x,y,t) u(x,yt) = f(x,y,t) (5.38a,b)

LI The equation of motion then takes the form of Eq. (5.33), with

I L,=~2~ bx [0] (5.39a,b)

I
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5.2.3 Complexity Issues ii

Unfortunately, the direct simulation of two-dimensional elements is considerably more

computationally intensive than the simulation of one-dimension elements. Because the spatial

domain is given by two independant variables, discretization in two dimensions in required. As a

result, no simulation results are currently available. A complete development of the direct

Isimulation of two dimensional elements is the subject of future research.-

5.3 Multiple Element Formulation

Distributed modelling and simulation of multiple member structures, such as space

frames and trusses, is a considerably more difficult problem than the single element

situation, even for one-dimensional elements. The primary difficulty is in the mathematical

treatment of the boundary conditions that arise at element junctions. A rigorous, general

assembly procedure for complex structures using direct PDE modelling remains to be

developed. One approach currently considered is to define a normalized local coordinate t

system (x--O at one end of an element and x=l at the other end) for each structural member,

as shown in Fig. 5-5, and collect the states associated with each element into a large state

vector. The dynamics of the entire structure is then still represented by Eq. (5.1), and Lx

becomes block diagonal, with each block representing the dynamics of one member. The

boundary conditions then relate various elements of the state vector at x=0 and/or x=l. The

difficulty in the direct modelling approach then lies in utilizing these awkward boundary

conditions for the purposes of simulation and control design. The direct multiple element

formulation remains an open area of research.
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7 71

6 CONTROL DESIGN BASED ON DIRECT PDE MODELS

This chapter studies the properties of optimal solitions to the distributed control of systems

described by direct PDE models. By distributed control, we imply that control effort is imparied to

the structure in a spatially distributed sense. This can be thought of as the limiting process of

employing an increasing number of actuators, all of which have a decreasing spatial domain of

influence. Particular emphasis is placed on a specific example, that of a Bemoulli-Euler beam.

Both finite- and infinite-length beam systems are studied, and comparisons are made between the

corresponding optimal solutions. Also, two types of beam actuation are addressed. The first is

force actuation, which is commonly used in theoretical studies yet is rarely achievable. The second f
is curvature actuation, which is more realizable (as mentioned in the previous chapter) but less

often addressed in theoretical works.

Distributed control is by no means a new topic. In fact, the essential mathematical .

groundwork was established in the 1960's by Butkovski (1960), Wang (1964), and Lions

(1971). The results then obtained were analogous to the classical LQR solution (e.g., the Riccati

matrix equation was replaced by a Riccati operator equation), and were derived using the principle

of optimality and/or advanced functional analysis. A later work by Tzafestas (1970) derived the I
necessary conditions for optimality from a variational calculus approach. A mathematically

rigorous derivation of the Riccati operator equat-on is performed by Gibson (1979). Also, Balas

(1982) addresses several implementation issues, including the use of a finite set of sensors and

actuators and a finite order controller. Perturbation methods are utilized to determine criteria for

closed-loop stability. Until now, the complexity of the distributed control problem has rendered it

a mere mathematical curiousity, rather than a practical tool. With today's computer resources,

however, the solutions to simple problems, such as the Bemoulli-Euler beam system described

below, are within reach.

1i0
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6.1. Linear Quadratic Optimal Control Theory, in the 1-D Case

IThe theory presented in this subsection closely resembles the work of Tzafestas (1970).

We restrict our attention to one-dimensional, linear, time-invariant distributed systems. Such

systems can be written in the form

f x(x,t) = Lx(x)x(x,t) + Bx(x)u(x,t), xe [0,1], te [0,.0) (6.1)

which is identical to Eq. (5.1), except that the disturbance input has been set to zero. As before,

the boundary conditions are assumed to be homogeneous, and are expressed as

x(0,t) = x(lt) = 0, te[0,oo) (6.2)

[while the initial conditions are expressed as

x(x,0) = x0(x), xG [0,1] (6.3)

The simplest optimal distributed compensator is derived under the assumption of full state

Ifeedback. That is, perfect measurements of x(x,t) are available in a continuous sense throughout

the spatial domain at every instant of time. It is also assumed that control actuation is available in a

similar distributed sense. While these assumptions are rather crude, they serve to define an upper

limit of achievable performance for the control system to be designed. The optimal distributed

control problem can then be stated as follows: Given an arbitrary initial condition, determine the

control required to return the system to the zero state while minimizing some cost criterion. We

will assume a linear quadratic cost functional of the form

[ ,Q(X)x + u(x,t)TR(x)u(x,t)] dx dt (6.4)

where Q and R are syametric (possibly spatially varying) weighting matrices. This is the

1. distributed analogue of the classical linear-quadratic regulator (LQR) problem. Its solution is

obtained by extending the classical variational calculus approach to distributed systems. Note that
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the cost functional has infinite time horizon. This corresponds to the steady-state LQR problem.

The finite time problem is also of interest, but provides no additional insight. I
We first augment the cost functional with the system dynamics via a costate vector, p(x,t): I

1,= +JJ p(X,t)T[Lx(x)x(x,t) + BCx)u(x,t)- x(x,t)] dx dt (6.5)

The augmented cost functional now depends on the three vectors, x, u, and p. The cost is

minimized by setting the variation in cost due to independent perturbations in these three vectors to

zero. Thus,

SJA(P) = JJ Sp(x,t)T [Lx(x)x(x,t) + B.,(x)u(x,t) - i(x,t)] dx dt = 0 , V Sp(x,t) (6.6ia) J

SJa(BU) = j f [u(x,t)TR(x)Su(x,t) + p(x,t)TBx(x)Su(x,t)] dx dt t

U(X*t)TR(x) + [B(x)p(x,t)] ]Su(xt)dxdt = 0, V Su(x,t) (6.6b)

8Ja(SX) = j [x(X,t)TQ(x)SX(xt) + p(x,t)TLx(x)5x - p(X,t)T5X(X,t)] dx dt

=J [x(xtQ(x) + [L(x)p(xt)]T + p(x,t)TI x(x,t)dxdt 0 , V Sx(x,t) (6.6c) I
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[
Equation (6.6a) recover; the system dynamics, while Eq. (6.6b) determines the control law. The

[ superscript () represents the formal adjoint operator, which is defined by

[ a~x)TLx(x)b~x) dx = JCL(x)a(x)]Tb(x) dx (6.7)

Ifor homogeneous boundary conditions. For a linear spatial differential operator, its adjoint is

[determined by integrating by parts with respect to the spatial dimension. Solving for u in Eq.

(6.6b) yields

u(x,t) = R(x)"Bx(x)p(x,t) (6.8)

f- The integrated terms resulting from the integration by parts in Eq. (6.6c) vanish, due to the

homogeneous boundary conditions and the added requirement that

I p(0,t) = p(1,t) = 0 , te[0,-) (6.9)

The third term in the integrand of Eq. (6.6c) is integrated by parts with respect to time. The

integrated terms go to zero due to the specification of the initial conditions for the system and the
requirement that

p(x,,,) = 0, xe[0,1] (6.10)

I Equations (6.1), (6.8), and the integrand in Eq. (6.6,2) lead to the following equations:

i(x,t) = Lx(x)x(x,t) - B(x)R(x ) *Bx(x)p(xt) (6.11a,b)

p(xt) =- Q(x)x(x,t) - Lx(x)p(x,t)

1i Equations (6.1 la,b) represent the state-costate equations for the distributed control

problem. Lions (1971) shows that there exists a relation between the state and the costate of the

form

1 p(x,t) = Px(x)x(x,t) (6.12)

I
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where P, is some linear matrix operator on x. Substituting this form in Eq. (6.11) results in a
nonlinear matrix Riccati operator equation in P.. Such an equation is, in general, difficult to solve.

Several approximate solution techniques are described in Juang (1983), Schaechter (1982), and

Zambettakis (1989). However, it is possible to express the linear operator in a different form, so _

that a solution is easily attained by numerical methods. The assumed form of the solution is the

same as used by Wang (1964) and Tzafestas (1970):

p(x,t) = JS(xy) x(y,t) dy (6.13)

0

,here S is the distributed-parameter analogue of the Riccati matrix for lumped-parameter systems.

Equation (6.9) automatically imposes the constraints

S(A,y) = S(l,y) = 0, ye[0,l] (6.14)

For complete generality, S must include generalized functions, such as Dirac delta functions and

their derivatives, if necessary. Also, Wang (1964) shows that S is symmetric in its arg iments

(i.e., S(x,y) = S(y,x)). Using Eqs. (6.8) and (6.13), the feedback control law becomes

u(x,t) = - K(x,y) x(y,t) dy, K(x,y) = R(x)'Bx(x)S(x,y) (6.15a,b)

Thus, the control law is linear and distributed.

It remains to derive a relation that enables the computation of S. Differentiating Eq. (6.13)

and introducing Eq. (6.11 a) leads to

1
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p(X,O = S(x,y) [Ly(y)x(y,t'- By(y)R(y)'IB;(y)p(y,)] dy

a 1
=J [Sxy);yT t- S(x,y)By(y)R(y) lB;(y)rs(y'-)X(Z't) dz] dy

[Sxy) yT 
-

11

= ~~~~ F s x y ~ t i s x z B c ) ~ y B ( z ) S ( z , y ) d ] x ( y , t ) d y ( 6 .1 6 )

Once again, an integration by pans applied to the first term in the integral results in the adjoint

operator. The boundary terms again vanish, subject to the restriction

S(x,0) = S(x,l) = 0, x(0,1] (6.17)

It should be noted that the transposes of adjoint operators operate to the left in this case. Similarly,

substituting Eq. (6.13) into the right side of Eq. (6.1 Ib) yields

p(;t) =-Q(X) X(X't) [ L.*(x)S(x,y)x(y,t)] d y

-J[ Q(x)5(x.y) + L'(x)S(x,y)] x(y,t) d y (6.18)

where B(x) is the Dirac delta function. Note that the state vector, x, is isolated from each term

under the integral in Eqs. (6.16) and (6.18). Thus, subtracting these two equations and setting the

r resulting integrand to zero yields the desired relation:

Lx(x)S(xy) + S(x,) LJ( + Q(x)(-y) - oJ S(x,z)Bz()R(z)'Bz.(z)S(z,y)dz = 0 (6.19)

This relation is afitnctional nonlinear matrix integro-partial differential equation in x and y, and

represents the distributed parameter analogue of the control algebraic Riccati equation. Note that

we have assumed S to be time-invariant, which corresponds to the steady-state linear quadratic
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regulator. For a finite time problem, the zero on the right hand side of Eq. (6.19) would be

replaced by -1 S(x,y).

6.2 Distributed Control of a Finite Beam to

In this section, we apply the distributed control theoryjust presented to a Bemoulli-Euler

beam of finite length, as described in Lupi (1991a). Force actuation will be assumed initially, and

curvature actuation will be deferred to Section 6.2.5. The feedback gains will be determined by

numerical solution of the Riccati equations given by Eq. (6.19). Although these equations are

quite complex, their solutions are readily attainable with the proper mix of algebraic manipulation

and numerical computation. Pinned-pinned boundary conditions are assumed for the example

applications presented in this section.

6.2.1 Cost Functional

The dimensionalized form of the cost functional for this system is expressed by

Jd fqu(x)EI(x) _2]2 + qT(x)m(x)[ tdd + r(x) - f} dxd dtd (6.20)

Thus, qu represents a weighting on deformational potential energy, qT represents a weighting on

kinetic energy, and r weighs control effort. The physical parameters El, m and L are introduced so

that all three weights have the same units. The cost functional can then be normalized, yielding
I.

J = pJJ ,qu(,)(x)[ -+p(x) +)f dx dt (6.21)

where the nondimensional cost is defined by I
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I i d (6.22)

N4E1IO)rn(O)L2  (.2

1The cost functional then takes the form of Eq. (6.4), with

Q(x) x ) R(x) (6.23)
0x 10

L 6.2.2 Derivation of the Necessary Conditions

We must first determine the adjoint operators corresponding to L, and bx.This is

accomplished by using the formal definition expressed in Eq. (6.7) and integrating by pans,

yielding

L"(x) = LT(x) P0-.)] ! b-(x) bT (x) = [0 ()] (6.24a,b)L~~(x) LTlx ) 0 J .3 x 2 '

Using these expressions in (6.19) yields

L~ ~xy) Sx~y +Q(x) 5(x.y) 3L~ ~) o 1 S(z,y) dz =0 (6.25)

Also, making use of Eq. (6.15), the feedback law becomes

Lk2(xY)J~kl(x' l  FS 2xy)] S2xYJ'
u(x't) =-k(x,y)Tx(y,t)dy , k(x,y)= XYj=IX x[ 2 Y (6.26a,b)

The effect of the curvature feedback term (k1 ) is to stiffen the beam, which reduces the settling time

of the system, while the effect of the velocity feedback term (I2 ) is to increase the damping of the

system.

Equation (6.25) represents a system of four coupled, nonlinear, integro-pardal differential

equations. Due to the symmetry of S, the fourth is redundant. Also, only S12 and S22 are needed

1
1112



to compute the feedback gains, The equation for S12 , which represents the curvature feedback
gin kernel, is uncoupled fr'om the others: i

a2 2a2 [13x) S i2(x~v)1 + . - [Pry) S ,(xvy)

= qu(x)(x)(X-y) - ) "] S 12(x,z)S 12 (z,y) dz (6.27)

Similarly, for the velocity feedback gain kernel, the relevant intego-partial differential equation is 4
x2[IWS 2(X,y)] + 2-[T(Y) SI2(XY)]

+ "(x) (x-y) - dg ' 2 S22 (xz)S22(zy)dz = 0 (6.28) -

Note that this second equation requires knowledge of S1 2(x,y), which is determined upon solving

(6.27). Thus, the two equations must be solved consecutively, using approximate numerical

methods. I

6.2.3 Numerical Solution of the Riccati Equations

Previous attempts to obtain a numerical solution to the optimal distributed control problem

for a particular system have most often dealt with the operator form of the Riccati equation, which

is derived by Gibson (1979) using Eq. (6.12) rather than Eq. (6.13). Usually, the solution is

expressed as a series expansion of spatial differential operators of increasing order, as in Juang

(1983). In some cases, the distributed control law is only solved at points where discrete controls

are to be applied, which leads to a slightly suboptimal design. Balas (1982) takes this approach.

However, in this formulation, the functional form of the Riccati equations leads naturally to a

numerical solution procedure. Because of the fundamental differences in the forms of Eqs. (6.27)

and (6.28), a separate algorithm is developed for each equation, as discussed below.
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6.2.3.1 Solution of the First Riccati Equation

[ Equation (6.27) is solved by spatially discretizing the domain Of S12 and using finite

differencing and summation to approximate the derivative and integral operations, respectively. A

modified relaxation algorithm is then invoked to converge upon the solution. We begin by

discretizing the spatial variables according to

Xi = , i=0,...,N (6.29)

and defining the mesh

sij = Sj2(Xi.yj) (6.30)

A simple approximation to the derivative terms is then

~3[l(x) S 2(x,y)] +422[(y) S p(x,y)] -N2 [Ag.- 2(t3i+i3)sij] (6.31)

where Ak is defined by

At = Pi' 1 s i'I j + P3 1+ s i+t j + 31.t sij1 + Pj +1 si 1'1 (6.32)

The forcing term in Eq. (6.27) can be approximated by

qu(x)Tl(x) 5(x-y) - Nqujl i 8ij (6.33)

and 5ij is the discrete Kroneker delta function. Finally, the integral term is replaced with a

Isummation, leading to

~~~~~S12(XZ)SI2(z'y)dz Ngdr k  ikk

p ~ z NI-rik Skj

I 2 s (6.34)+i + I-2 A XI-L-5(.4
NI ri sii r j )J 2 \

where

I
I
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N

ij Sik Ski (6.35)

kej

Note that, in Eqs. (6.31) and (6.34), the terms involving sij have been isolated from terms

involving neighboring points. Collecting the approximate expressions, we have, for the finite

difference equation

2iN2Ak. - 2-N!(OiO~i qil i ~rj S.. + is. sjj 8i Sij (6.36)

Thus, given an initial estimate for the solution at each mesh point, so , the entire mesh is

successively iterated according to the rule i
S i"= s-0e ' 0<CO<2 (6.37)

In this last equation, eP represents the residual error at each mesh point at the n-th iteration. An

expression for this error is obtained by solving Eq. (6.36) for sij, which yields

N2Ai' + Llij - NquirliSij
eij = sij  N (6.38)

2N 2 (O1 i+O3-) " - r i n+ J l 81)

Also, c is a relaxation parameter, and can be adjusted to maximize the rate of convergence towards

a solution, as discussed in Press (1986).

The condition for a converged solution is given by

I4l <E, Vi,j (6.39)

where e is some small positive constant. The relaxation method is guaranteed to converge when r J
approaches infinity (In this case, Eq. (6.27) reduces to Poisson's equation), and tests have shown

that convergence is maintained over a wide range of values of qu and r, provided co is adjusted j
accordingly.



In Fig. 6-1, the gain surfaces for various qur are shown for the case of constant sectionIProperties. The effect of the boundaries can be seen by observing the gain surface near
(x,y)=(OO) and (xy)=(l,l). Qualitatively, the influence of the boundary conditions extends over
a smaller domain as the control authority is increased (i.e., as the quantity r/qu becomes smaller).
A quantitative analysis indicates that the extent of this "boundary layer" is roughly proportional to
(r/qu)tI4. This makes sense physically. As the contol authority is increased (r decreasing), the[system is able to suppress the majority of a disturbance before the energy reaches and reflects off

the boundary. Thus, near the center of the beam, the controller models the beam as if it were

infinite in length.

6.2.3.2 Solution of the Second Riccati Equation
Equation (6.28) does not have a well-behaved solution, since it requires that the integral of

S22(x,y) cancel the delta function. We therefore make the following substitution:

S22(x,Y) = S22(x,Y) + g (x) 5(x-y) (6.40)

I where

J g(x) = ILMI r->(x)2qu(x) + qT(x)] (6.41)

This is equivalent to identifying a collocated component in the velocity feedback kernel. Equation

(6.28) then becomes

I2 22(xz)922(zy) dz + fg(x)+g(y)] 922(xy) - C(xY) = 0 (6.42)

where the known forcing term is given by
a22

C(XY) = L [11(X)S12(XY))J+a2 Il(Y)S12(xy)-qV(x)aLx8(x.y) (6.43)
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It is easy to show that c(x,y) is continuous (assuming 11(x) and J3(x) are continuous), as the partial

[differentiation terms produce delta functions that exactly cancel the term involving S(x-y).

The solution algorithm for S22 is snaighdrorward. Upon discretizing in the spatial

lI dimension, Eq. (6.42) becomes

9 2 2R*'S 2 2 + 9 22 G + G9 2 2 - C -0 (6.44)

where

S22 -- [22(xi,Yj)] (6.45a)

C - [c(xi,yp] (6.45b)

G = diag [g(x1)] (6.45c)

I R = diagEN 1- ---- (6.45d)

and N is the number of mesh points between x-0 and x=l. The matrix equation is solved by

completing the square. After pre- and pist-multiplying by R"1'2, Eq. (6.44) can be factored as

ii [R'Ir- 22 R-'/2 + G]2= R.'/2CR.'r2 + G2  (6.46)

The right hand side of Eq. (6.46) is symmetric and positive semidefinite. It therefore has the

eigenvector decomposition

R'I-CR'I2 + G2 = WAWT (6.47)

where A is a diagonal matrix with non-negative entries. Finally, substituting Eq. (6.47) in Eq.

(6.46) and solving for 922 gives

[ S22 = Rl/2[WAI /2 WT " G]R I/2  (6.48)

I
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Typical k2(xy) surfaces are shown in Fig. 6-2 (k2(x,y) is just k2 (x,y) without the delta function

corresponding to the collocated feedback component). Finally, Fig. 6-3 shows the feedback gain

kernels associated with a tapered beam.

6.2.4 The Case of Curvature Actuation

For the sake of simplicity, we will assume constant section properties and weighting

functions for this case. This makes it possible to obtain an analytical expression for the feedback

gains. (Note that, for force actuation, a numerical solution procedure is required even in the case

of constant section properties and weightings.)

The feedback gains, expressed in terms of the solutions to the Riccati equations, become

k1(X,y) =r2S 2 (x,y), k2(x,y) = 2  (6.49a,b)

and the functonal Riccad equatons themselves become

~Sj 2(XY)+LS 2 (x,y) = quS(x-y) - fS12 (XZ) .iS 2(z,y)dz (6.50a)

0 r

S1(~)~ pxy +qy)x~)-~ fS 2 xz dz =0 (6.50b)ax2 -1(,)+ S1XY TX-Yay - I 2( Sz L 2 2 (z~y

Integrating by parts and involing the homogeneous boundary conditions yields

TX2S I (x,Y)+ XY) =q x-'a a2 a22 ( = q(x-y) l S2(z,y) dz (6.51a)

a2  a2  1 a2 a2
-2S12(x,y)+-L2S 1 2(x,y)+qTS(x-y) -dz = 0 (6.51b)

Furthermore, introducing Eqs. (6.49a,b) and exploiting the symmetry of S(x,y) yields
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2rkl2(x,Y) = quS(x-y) - rJkl2(z)kl 2(z,y) dz (6.52a)

r k22(xz)k22(z,y) dz = 2rk12(x,y) + qT S(x-y) (6.52b)

It can easily be shown that the generalized functions

k1(x,y) = q [. I I B(X-y) (6.53a)

k2(x,y) -q+ 2 [ 1 qJ 1 ] 6xy (6.53b)

solve the Riccati equations. The optimal control is therefore purely collocated, even though the

controller has access to the state vector over the entire spatial domain.

6.2.5 Closed-Loop Simulation Results

The closed-loop simulations of a uniform beam with a sinusoidal inidal condition and
various control and state weighdngs are shown in Fig. 6-4. As expected, the response of the

system becomes faster with increasing control authority. In Fig. 6-5, the response of the system to

a center-span transverse impulse is shown. This figure can be compared with the open-loop case,

Ishown in Fig. 5-3. In this case, most of the disturbance has been suppressed before it reflects

from the boundaries, and the first mode of vibration is never established. This is characteristic of

I high-g in control systems, which provide high levels of damping augmentation. For these

systems, the energy in the propagating wave is effectively absorbed as it progresses towards the

boundaries of the system.

[In order to compare the performance of the optimal distributed controller with the

performance of discrete controllers, finite element models of the beam system were developed.

IThese models have as state variables the same quantities that are used in the distributed model (i.e.,

curvature and velocity), but are only available at discrete points along the structure. Similarly, the

control inputs are available at a finite number of stations along the beam. These models were used

1
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to develop full state LQR control laws for the discrete systems. Both the sinusoidal initial

condition and the center-span impact cases were addressed. Table 6-1 summarizes the results of

the study. In all cases, the optimal cost required to return the system to rest approaches the optimal

distributed cost as the discretization becomes finer. (Details on determining the optimal cost for the

distributed controller can be found in Appendix D.) This is convincing evidence that the

distributed control formulation indeed converges upon an optimal solution.

6.3 Distributed Control of an Infinite Beam

In this section, we validate the results for the optimal control of finite beams by considering

an infinite beam system. Most of the formulation presented in this section is based on recent work

by deLuis (1989). The basic idea is to work in the spatial frequency-domain, using the spatially

transformed dynamics of the beam system. This reduces the distributed control problem to a _

family of conventional optimal control problems, parametrized by the spatial frequency variable.

The infinite model requires that the section properdes and cost ,, eightings be spatially constant, so

that the spatial transform is possible. In his work, deLuis relies on functional analysis arguments

to justify the form of the control law. In contrast, the approach presented here is somewhat more

straightforward and intuitively satisfying.

6.3.1 Spatially Transformed Dynamics and Cost Functional

Because the beam is of infinite extent, we can take the spatial Fourier transform of (5.1).

The resulting equation of motion, expressed in terms oft and the spatial frequency, , is then

( ,t) = A(4) (4,t) + bO(4,t) (6.54)

where A(4) is obtained from Eq. (5.12a):

A(4) 0 .42 (6.55)2 0J
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I.

Weighcings LuZped Parameter Fort'utatof Distributed

8 16 r 32 ForuhtIOfl
qu q r e~le, cts J elemnts

1 1 10
4  13.68 13.23 13.19 13.15

J4 1 1 10*
3  22.02 21.72 21.65 21.64

1 1 10 56.79 56.67 56.64 56.63

10 1 10-7 153.43 156.62 156.13 156.13

1 1 104 6.50x!0
"  6.$L10

"3 6.94x10
3  7-07x0"

3

I J, 1 1 10
3  2.16x10

2  2.24x102 2.2x10" 2.24x10"

1 1 10.2 6.99%102 7.03s
I 0* 7.05x0-2 7.07x0"

10 1 10- 0.153 0.160 0.163 0.166

Table 6-I: Comparison between optima costs for distributed control and conventional lumped-

1parameter control. In the table, Jd corresponds to an initial displacement field vO(x)=sin(2-x), and

Jd corresponds to an initial unit impulsive disturbance applied at the center-span of the beam.

126

I



I i "

The transformed state variable and the transformed control input are, in general, complex-valued.

However, because A(4) and b are purely real for this system, the real and imaginary dynamics ]
decouple, giving

§,(4,t) = A).(, + bk ( ,t),. a(4,t) = A(4).%( ,t) + b 0,( .t) (6.56a,b) "

Thus, for each value of , we are left with two identical real-valued systems for which an optimal

control solution is desired.

The cost functional to be minimized is quadratic in the normalized variables. For

dis-tibuted control, we must integrate over the entire (infinite) domain. The cost functional is thus j

VL~2j 2 +q'r [ +rf dxdt (6.5)

[

In this last expression, which is analogous to Eq. (6.21). qu and qT weigh potential and kinetic f
energy, respectively, while r weighs control effort. Equation (6.57) can be written

2 OJ, (t) dt (6.5S)

where

J,(t) = J [y(x,t)Ty(x,t) + r u(x.t)2] dx (6.59)

and the following definidons have been made:

y(x,t) = Q112X(Xt), Q = [qu ] (6.60a,b)

By making use of Parseval's theorem, we can write

.,2,(t) = J"[ ( ,t)"Q(,.t)+ r IN ,t)l2] d4 (6.61)
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where the superscript (H) represents the complex conjugate tanspose operation. Now,

I. interchanging the order of integration in (6.58) yields

41r -- _L ( r. ) d4 (6.62)

where

At this point, the following observation can be made: J is minimized if and only if Jt(") is

minimized for every value of 4. We must now express 6( ,t) and Q(,t) in terms of their real and

imaginary pans. B-ecause Q and r are purely real, the (imaginary) cross-terms cancel in (6.63),

I and we are left with

JtR) =I ~ + A 1 (,t)2] dt

+ r+ r 6,(4,t)2] dt (6.64)

6.3.2 Optimal Control Solution

For each value of , we have two identical dynamic systems given by Eqs. (6.56a,b) and

two identical cost functionals given by Eq. (6.64). Therefore, the control laws relating k to , and

to 2i will be identical, and can be combined into the single equation

O(k,t) = - M'(( ,t) (6.65)

where the transformed gain vector, t(4), is a real function of the spatial frequency. Takldng the

jinverse transform of this equation yields

I
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u(x,t) - k(-y)Tx(y,t) dy (6.66) A
Thus, the integration kernel k(x.y) can be though of as a weighting from the sensed state at a
location y to the control actuation at a location x. Classical LQR theory gives, as the optimal I
solution

r= ,( 2()] -bTS(k) (6.67)

where S(4) solves the control algebraic Riccati equation

.A()Ts(4) + S(4)A(4) + Q - 1 S(4)bbTS(,) = 0 (6.68)

Substituting the known parameters A(4), b, Q and r and solving for the elements of S gives f

S =24 .r 41[Pfi7Xij I (6.69b)

S22A) = r42 -XT +2[T h + X (6.69c)
where

x .U = r4, T =4 (6.70a,b)

Note that the endre behavior of the solution is parametrized by the dimensionless groupings, Xu
and LT. Since 4 has the units of inverse length, we can infer that (r/qu)1 4 and (r/qT)/ 4 represent

nondimensional distances.

Substituting Eq. (6.69b) in Eq. (6.67), we obtain, for the feedback gain relating curvature
to force,

kl(x) - (qtg/r)314 fl[(qu/r) /14X] 
(6.71)

where f,(.) is the inverse transform of f, given by I
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fig) [,, + 1 42] (6.72)

A Aplot of fl(-) is shown in Fig. 6-6. Some qualitative features of the feedback gain become

j apparent upon examination of Eq. (6.71). First, the magnitude of the feedback vares as (qu/r)314,

so that increased curvature penalty and reduced control penaity both increase the feedback gain, as

[ expected. Second, the argument of fl(.) indicates that the control becomes more localized with

increasing state penalty and increasing control authority. This makes sense in terms of the

I nondimensional lengths described above. High control authority suggests that a disturbance can be

suppressed quickly, before the majority of the energy travels very far along the beam, whereas low

authority requires a longer time interval (and hence greater distance) to suppress the disturbance.

These features are also observed for the finite beam system described in Section 6.2. In fact, cross

sections of the finite beam gain kernels, taken near the center of the surface, have the approximate

shape of the gain kernel for the infinite beam system, and the approximation gets better with

increasing control authority. A quantitative analysis indicates that this is the case when r/qu < 10-3.

In computing k2(x), the velocity to force feedback term, an interesting feature emerges.

The Riccati solution, S22(4), does not go to zero as 4 approaches infinity. As a result, the inverse

transform of ,(4) will include a delta function. In order to make the inverse transform

continuous, this bias term is subtracted from P,(4), and a delta function with magnitude equal to

this bias is added to k2(x) after inversion. Thus, the velocity feedback gain kernel is expressed as

k2(x) = (qL/r)314 f2[(qu/r) 4x ;qr/qtj + "fI+' q.. 8(x) (6.73)
where

f2 ( ;y) ".2k 2 () 7+ - (6.74)

This corresponds exactly with the introduction of a collocated velocity feedback term for the finite

beam system. Indeed, the magnitude of the collocated gain agrees with the finite case, with the

assumption of constant section properties and weightings. Note that the velocity feedback term is

j parametrized by the same nondimensional length as kl(x), but an additional parameter, the ratio
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between kinetic and potential energy penalties, is also present. Plots of f2(-; ), shown for various

y. are shown in Fig. 6-7. Once again, cross sections of the velocity feedback gain kernel for the

finite beam case agree quite well with the infinite beam kernel.

6.3.3 The Case of Curvature Actuation

We now study the case where a distributed actuator capable of inducing curvature in a

continuous manner represents the control input. Such is the limiting case of a beam with many

embedded piezoelectric actuators distributed along its span. For this system, the equation of

motion is modified to

a-4 v a~t 2  a2v(xt) + 2v(x,t) = -mc(x,t) (6.75)

where m.(x,t) represents the net action of the distributed piezoelecuics. By making the new

definitions

u(x,t) = mc(x,t), b(4) (2](6.76a,b)

10
the transfornmed equation of motion becomes

A( ) ( ,t) + b )(,t) (6.77)

This equation is identical to Eq. (6.54) except that b is now a function of . This subtle difference

has a profound effect on the control law. Following the same procedure as in the previous

subsection leads to expressions for the transformed gain kernels which are independant of :

" As a result, we have

kt(x) = .)3, k2 (x) = z 8(x) (6.79ab)I
I
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The optimal control is therefore purely collocated, even though the controller has access to the state

vector over the entire spatial domain. This result is quantitatively identical to the finite beam case I
presented in Section 6.2.5, regardless of the state and control effort penalties, 1

6.4 Discussion I
It becomes clear that the choice of actuator for the Bemoulli-Euler beam system has a

profound effect on the optimal control law. With a distributed force actuator, the curvature J
feedback is purely distributed (becoming more localized with increasing control authority), while

the velocity feedback has both collocated and distributed components. For a finite beanm, a I
nondimensional length, which depends on the state and control effort penalties, indicates the extent

to which the boundary conditions imposed on the finite beam affect the optimal control solution

Numerical examples for finite beam systems support this claim.

For a beam with a distributed curvature actuator (a more realistic and impiementable

situation), both the curvature and velocity feedback gains are purely collocated, regardless of the [
nondimensional length parameter. As a result, the boundary conditions do not affect the optimal

control solution for this type of actuation. The next logical step in this analysis would be to study

the effect of replacing the distributed actuator with a set of discrete controls, which better reflects a

physically realizable controlled structure. It would be interesting to observe whether or not the

optimal feedback gains are still collocated for a set of discrete embedded piezoelectric actuators.

At present, no claims can be made concerning the robustness of the distributed controller.

A quantitative robustness analysis would help determine the sensitivity of the performance of the

system to errors in the structural model. Also, the assumption of a truly distributed controller is

rather restrictive. Any implementable system will consist of a finite set of sensors and actuators.

Consequently, the theory must be extended to account for discrete sensing and actuaticn. It may

be possible to extend the optimal output feedback approach discussed by Levine (1971) or the

optimal projection approach developed by Bernstein (1986) in a manner amenable to the discrete

sensing/actuation problem.
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Another future research topic is the determination of optimal distributed control laws for

arbitrary boundary conditions. Such a development was attempted by Tzafestas (1970), but has

found extremely limited application. For example, the optimal distributed control of a candlevered

Ibeam was addressed by Bailey (1984) using Tzafestas' formulation, with the conclusion that the

boundary conditions could not be posed in the specific mathematical form required by the

formulation. Clearly, the problem lies in dealing with the boundary conditions which arise when

[determining the adjoint operators in Eqs. (6.6a-c). These boundary terms result in additional

necessary conditions for optimality, expressed in terms of ordinary differential equations.

fCurently, no general formulation exists which includes these extra conditions. The ability to

handle general boundary conditions would make it possible to develop control laws for multiple

element strucures, such as space frames and trusses.

I Another possible application of distributed control theory is in the active control of two-

dimensional structures, such as mirror surfaces and shell structures. However, numerical

solutions for plates and membrane models require extensive computational capabilities, and

therefore represent an ambitious underta.king.

I
I
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7. HYBRID MODELLING AND CONTROL APPROACH FOR HAC/LAC DESIGN

It remains to develop a control strategy that utilizes the best aspects of both the TEM and j
direct modelling methodologies. For example, the distributed control solutions obtained through

the direct model could form the basis for a LAC design. The resulting model of the controlled

structure could then be transformed, and a HAC controller could be designed by posing the

problem in the standard form, as described in Section 4.2. Finally, command prefiltering of

control inputs for slew maneuvers would be determined using the open-loop optimal control theory .

discussed in Section 4.1. The exactness of the theory makes it more attractive than modal-based

approaches, such as the work of Singer (1990). The entire hierarchically controlled system would -

then have the general form shown in Fig. 7-1.

Inherent in this objective is a general unification of the two modelling approaches, which

has not been achieved to date. Such a unification would be a profound improvement in the au;. y j
to develop exact control models for large flexible structures. Analytic TEM solutions do exist,

however, for some specific controlled structural elements. Consider, for example, the Bernoulli- Ir
Euler beam with curvature feedback. The dynamics equation, expressed in dimensional form, is

E- v(x,t)+pA- 2 v(x,t) = -m(x,t) (7.1)

The optimal distributed controller is collocated in this case, with the normalized feedback law given

by

mu(xt) kk 22 v(xt) - k22-v(x,t) (7.2)

where k1 and k2 are determined via Eqs. (6.53a,b). Converting this feedback law into dimensional

form yields

mu(X,t) k xEI v(x,t) - k2 v(x,t) (7.3)
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and substituting this expression in the dynamics equation produces the equation of motion for the

controlled structural element. It is given by

l ) v(xJs) +k p I' - 5 v(x,t) + pA t v(x,) = 0 (7.4)

It is now possible to transform the closed-loop dynamics into the frequency-domain. Assuming

zero initial conditions, we hLve

(l+kt) I-v(x,s) - jk2 -(xs) + c 4 V(x,s) 0 (7.5)

where

cc = -pA S2 (7.6)

The homogeneous 'olution vector is then given by

vH(x,5)T = [eaix alx Ja2x eJ2
x  (7.7)

with

I +k , + ,

(7.Sa,b)

a2= 1 t+ kt. j

The expression for the internal state vector in terms of V(x,s) remains unchanged, and is given by

Eq. (2.60). The same can be said for the generalized boundary displacements and forces. The

homogeneous solution vector can then be used to derive analytical expressions for the dynamic

stiffness and interpolation matrices, which will be slightly more complex than the matrices

corresponding to the uncontrolled beam.

Unfortunately, if the feedback is indeed distributed rather than purely collocated, Eq. (7 5)

becomes an integral equation. A general solution is therefore not available. However, the form of
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f I. the gain kernels for a partcular problem (e.g., beam with force feedback) may lead to some form
of analytical solution, or, at least, an accurate approximate solution. Whlether or not these classes
of controled structures lend themselves to analytical TM models in the general case remains an

unresolved issue.

I

I
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8., CONCLUSIONS AND RECOMMENDATIONS. r q,, -.

The mathematically exact TEM and direct stractra modelling methods have been-

developed and demonstrated. By retaining the dynamics that describe the structural model over the

entire frequency range, accurate behavioral predictions are available. For examplc., the wave-like

propagation characteristics associated with impulsive disturbances are easily observed using either

exact modelling approach. In addition, these models do not require modal analysis techniques,

although modal information is available for TEM models of fr=e-like structures. Futrhermore,

the frequency-domain analysis incorporates genera] viscoelastic damping mechanisms in a very

s-aightforward manner. Finally, the dramatic increase in computation speed of the TEM analysis

technique over traditional finite element modelling has been demonsrted.

New control formulations were developed that take advantage of the infornation available

via the exact modelling methods. An open-loop optimal control technique was demonstrated bstng

TEM models, and was found to virtually eliminate the residual energy associated with the slewing

of flexible sructures. The only approximation made concerned the control inputs themselves,

which were assumed to have limited bandwidth. The direct analysis technique provided the

framework for a distributed control theory. Having been developed, the theory was applied to a

stmple Bernoulli-Euler beam system, and the feedback gain kernels were determined. These

kernels agreed with previous results concerning the optimal distributed control of an infinite beam.

Several issues remain unresolved, and are recommended for future research. Although the

TEM methodology has been developed for two-dimensional structures, it is incomplete in two

respects. First, the selection of boundary points and their relation to element geometry and

solution accuracy must be addressed. Second, a rigorous method of determining the set of basis

solutions for the homogeneous solution vector must be developed. Clearly, these two goals are

intimately tied, as the number of basis solutions required is directly related to the number of the

boundary points used. Inherent in this analysis is a comparison between the TEM analysis and

finite element models of two-dimensional structures.
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Sel o . sTd-loopcontrolprobiciexprissedinthefrequency-domain wth Mmbdes
remains t6 biolvi& Here; the lack of a finito state-space representation of the plant is the:

fundamental ifficulty. It may be possible to extend the coprime factorization technique to general

structural systems, or develop some other approach.

The distributed control solutions developed here must be extended to include other

jstructural elements, such as Timoshenko beams and axial and torsional rods. Two-dimensional

elements, which may represent deformable miror surfaces or solar panels, must also be

Iincorporated into the distributed control framework, although this extension presents a

considerably more difficult computational challenge. Finally, the theory must be extended to apply

to multi-element structures, which may include any of the elements mentioned. The ability to

handle the complex boundary conditions that arise at element junctions is the primary difficulty

here.

An evaluation of the robustness of the distributed controller to model uncertainty must also

be underta:en. Discrepencies between the model and the actual physical structure, caused by

tolerances in physical dimensions and material properties, structural joint dynamics, nonlinear

material behavior and other unmodelled dynamics, usually result in performance degradation. A

rigorous robustness evaluation would quantify the relation between modelling error and

performance. Linked to this issue are implementation considerations. Because actuators and

sensors are always discrete in nature, the distributed control solution represents only a limiting case

as the number of individual actuators and sensors approaches infinity. For any '.nplementable

control design, then, the effect of utilizing a finite set of actuators and sensors must be addressed.

Also relevant is a study of the effect of actuator and sensor dynamics and their relation to robust

stability.

A combined direct/rEM control methodology for structural systems is not yet available.

aThis hybrid technique would facilitate the development of hierarchical control schemes, such as

HAC/LAC, without resorting to modal analysis and truncation. Consequently, the problems of

1control and observation spillover would be alleviated, at least from a mathematical perspective.
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(Actual implenentation issuesnii also be addressed as mentoned above.), Consequently. a less

conservatve contol design would be required, resulting in enhanced nomrial perforrnancm

14
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APPN" k HIGH FRE(K]ENCY TEM ELEMENTS

Tidappendix presents thed naiitiffneis matrices for high frequency ThM elements.

FIn~ Padul the Minin-! errann aial ro and be Tmose ba, bth scibed in Sec.

2.3.6, are discussed.

A-1 Mindlin.Herrrnann Rod
The dynamics of the Mindlin-Hermann rod are characterized by the following set of

differential equations:

- a2(%+2G)- 3 -2vj(x,s) Lpa2s~v1 (x,s) =2aX!-v2(x,s) (A.1a)

a,22(X,s).- [s(%+G) + pa s2V 2(x,s) =4aK2X V, xs) (Alb

All symbols in these equations are defined in Sec. 2.3.6. These equations apply to a rod of

circular cross-section only. The Lame constants are related to the modulus of elasticity and

Poisson's ratio of the material according to

E= G = E(A.2a,b)
(I+v)(i.2v)' 2(1+v)

We %%ill assume that the radial deformation, v2, is constrained at the boundaries of the element.

This is the case when the element is embedded in a stuictural junction. We therefore have

V2(0,s) = v2(L,s) = 0 (A.3)

With these constraints imposed, the stiffness matrix becomes 2-by-2, and can be expressed by

K(s) =~ 2 [Ps.c I2 2 t~ j+~~Wis) I-Pi + 2S2  PIs1C2 - P2s2CIJ(A

where

_____2Aj 2(-cIC 2) J+2

A5(s) - Q vQ -2nya Pa()ta) 1 (A.5)

Iand the following trigonometric definitions have been made:

142



: ,"' C.*-' ,osr .Lpa,--,') r .1 :A :'T'IV/ q
S o(A.6a,b)

Also, jand are given by

- i 2(1+v)(1.2v) 2pa2S2.- 16-c2 2E](ala) + ic2(1.v)(1-2v)E (;a)3  A7

4(1-v)(1-2v)pa
2s2 + 16 1 E

and the nondimensional parameters ala and a2a are given by

(czia)
2 

= -XI[((1+ 2 )2 -(+X 3 0)C (A.8)

where

X21v (1+X2)(1-2v) + I
x2(1-v) X2 = 8X2 (A.9a-d)

3 = 4)2 E

The stiffness matrix can be shown to reduce to that of the simple axial rod either by setting v=O or j

by taking the limit as the radius, a, approaches zero.

A.2 Timoshenko Beam

The dynamics of the Timoshenko beam can be expressed either as a system of two coupled

partial differential equations or as the single equation

EI -- v(x,t) + pA'(x,t) - p1l ] " (xt) + dk'V (x,t) = fd(x,t) (A.10)

Tadng the Laplace transform of this equation yields
a4 2

T 4v(x,s) + 2pja2A-v(x,s) - a 4v(x,s) = Td(x,s) (A.11)

where the following parameters have been defined:
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A (A.12a-e)

P 1- 2(1+k- ar), 2 ki (acr)4 ,

|-. The homogeneous solution vector is then

VH's) cos(a3x) (A.13)

Lsin(a02x)J

where

p2 = p3-1 _ p =P3 +P, (A.14a,b)

{and
2=2 = 1+(-l2(r4(A. 15)

Due the the internal shearing allowed by the Timoshenko model, the expressions for the internal

state vector in terms of the homogeneous solution become considerably more complex. They are:

SV~x , _2 [(+., +P 4i8 x l
8 e(x,s) / 2  2 V(XS) (A.16)

Ls) 2 [ + ,a2±] j

where

p4 = kl(a-r)2  (A.17)

The stiffness matrix then takes the form given by Eq. (2.66), with

i
:I
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X ~K(S) Sh 03SO1.

K5(s) ~ 's = cf~s 3 t) "

K6 (s)- = 3 (3 ch st 043 s t

A(s) = (ch -t

shK sh +(Pf31L ) (-ht (A.18agd)

133=13? + P4
1 3 3 )

31L 2 (A.203 b]

The strigfnoess i a ntirtes Bemulsiou bemiisd teovee ystigtecaatrsi is

r,~~~~~~~c to zeo Te, IP4 0 pp1,ad 3=1213=34

01 P2
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" APPENI"' - IM-ULATION OF BEAM' WITH CURVATURE ACTUATION

-In this appendix, we extend the results of Section 5.1.2.3 to the case of a beam with a

distributed curvature actuator. The modified equation of motion, expressed in the time-dornian, is

a2 [ 2  t + _a 2  a2

[ , 2  Cxt)] P ( x, -- (X,t) + fn(x,t)

which becomes, after Laplace t-ansformation

1. a~2F r 2 , (Xs) 1 _L ) [S2 'j(x,s) - s -
2~~yx -v~v

0(x) v0(x)j -m(x,s) + ifn(x,,) (B.2)
ax2L" a.2 I p. 22

The assumed linear feedback control law is
I

mu(x,t) =-f [kI(X,Y) T1(Y) a-v(y,t)+ k2(x,y)2v(yt)] dy (B-3)
0

which transforms into

Mu(x,s) .f I y k (y ,s)]dy

0 
1

+J[ k2(x,y) v(Y)] dy (B.4)

Substituting this expression into Eq. (B.2) leads to

82 [ . 2(x).j v(x's)] + 12 (X's ) + LE [ 2 . + s k2dxy) yS)]

(x) +-v(x ) + s5V0(X) + - k2(x,y)vo(y) d (B.5)I = f (X)Io( 1 &2  I y

- Employing the same discretization technique used in Section 5.1.2.3, we obtain, for the finite-

difference equation
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All tenns in Nis last equation ar6 as defined in Section 5.1.2.3.
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In this appendix, we discuss the direct simulation of a rmoshenko beam. F6rsimplicity,
we Will assumed that the initial 6onditons are zero and that the secton properties are constant,
although other situations can be treated in a manner sinilar to the Bernoulli-Euler beam model.

Ihe dimensional form of the equation of motion is

- fd(,t) (C.1)

which can be normalized (using the same groupings as in Section 5.1.2.1) to
ax -- + v12ctE_-+ xt) =2iv~~t - a, I +act£ a 4v(x,t) + oti2aE L v(x,t ) _f(x,t) (C.2)

Swhere

IEk

A L 2 = -, c G= ( C .3 a ,b )

Talng the Laplace transfor-m (neglecting initial conditions) )ields

[1+tjSZ-(,s) +S ((X'S) + al2a~pS4 (X'S) j(X's) (04

Finally, the spatial discerization yields

[N4 D2 + S2 (I- al(l+aE)N 2 D) + a 2c E s4] ,'(s) = S i (s) (C.5)

II
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APPENDIX D- OPJ IMALCOSTS FOR DISTRIBUTED- CONTROU SYSTEMS

- This appendix discusses the computation of the optimal cost requirea to bring a distributed

system to rest from an arbitrary initial condition using a distributed controller. We will restrict

attention to the force actuation case, and we will assume uniform cross section properties. The

formulation is analogous to the discrete case, for which the optimal cost is expressed by

j" = 2XTX0 (D.1)

where x0 is the initial condition on the state vector and S is the Riccati matrix. Wang (1964)

shows that, for the distributed case, the optimal cost has the form

- 11
j"= 1 Jxo(x)TS(x,y)xo(y) dx dyt2

where x0(x) is the distributed initial condition and S(x,y) is the Riccati matrix function associated

with Eq. (6 19). Thus, for the case of an initial displacement, vo(x)=sin(2,,x), the optimal cost is

j a2  n2

vJ -- Vo(x) Slt(x,y) 5 -- vo(y) dx dy

= 8r"U 0Jfsin(2ttx) SII(x,y) sin(2rty) dx dy (D.3)

The Riccari equations for S11(x,y) follow directly from Eq. (6.25). For constant section

properties, they are given by
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( 2S x(Xy) -'Y 1 S22(X,Z)SI 2(zy) dz 0 '(D.4a)

xX,Y) +-LSIXY' 2J22xz§,(~~z 0 (.b

Adding these two equations yields xy ~~axzS~zY z 0 )(.b

V2SI1(x,y) V2 S22(X,Y) + ljS 22(Xz)SJ2ZY3  2XZS2(z,y)]dz z D5

Thus, Si1 is computed using a simple relaxation a]orjithm, For the case of an initial velocity,
vo~)=~x-l2),which is equivalent to a center-span impu!se, the cost is simply

j = ff OWx)S 22(X,Y) "o(y) dx dy = LS22(l.2,1/2) (D.6)00
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